Mathematical Modeling and backward bifurcation in monkeypox disease under real observed data

We propose a mathematical model to analyze the monkeypox disease in the context of the known cases of the USA epidemic. We formulate the model and obtain their essential properties. The equilibrium points are found and their stability is demonstrated. We prove that the model is locally asymptotical...

Full description

Bibliographic Details
Main Authors: F.M. Allehiany, Mahmoud H. DarAssi, Irfan Ahmad, Muhammad Altaf Khan, Elsayed M. Tag-eldin
Format: Article
Language:English
Published: Elsevier 2023-07-01
Series:Results in Physics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211379723003509
Description
Summary:We propose a mathematical model to analyze the monkeypox disease in the context of the known cases of the USA epidemic. We formulate the model and obtain their essential properties. The equilibrium points are found and their stability is demonstrated. We prove that the model is locally asymptotical stable (LAS) at disease free equilibrium (DFE) under R0<1. The presence of an endemic equilibrium is demonstrated, and the phenomena of backward bifurcation is discovered in the monkeypox disease model. In the monkeypox infectious disease model, the parameters that lead to backward bifurcation are θr, τ1, and ξr. When R0>1, we determine the model’s global asymptotical stability (GAS). To parameterize the model using real data, we obtain the real value of the model parameters and compute R1=0.5905. Additionally, we do a sensitivity analysis on the parameters in R0. We conclude by presenting specific numerical findings.
ISSN:2211-3797