iMSCGnet: Iterative Multi-Scale Context-Guided Segmentation of Skin Lesion in Dermoscopic Images
Despite much effort has been devoted to skin lesion segmentation, the performance of existing methods is still not satisfactory enough for practical applications. The challenges may include fuzzy lesion boundary, uneven and low contrast, and variation of colors across space, which often lead to frag...
Päätekijät: | Yujiao Tang, Zhiwen Fang, Shaofeng Yuan, Chang'An Zhan, Yanyan Xing, Joey Tianyi Zhou, Feng Yang |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
IEEE
2020-01-01
|
Sarja: | IEEE Access |
Aiheet: | |
Linkit: | https://ieeexplore.ieee.org/document/9007375/ |
Samankaltaisia teoksia
-
Robust fusion for skin lesion segmentation of dermoscopic images
Tekijä: Qingqing Guo, et al.
Julkaistu: (2023-03-01) -
Semi-Supervised Skin Lesion Segmentation With Coupling CNN and Transformer Features
Tekijä: Mohammad D. Alahmadi, et al.
Julkaistu: (2022-01-01) -
Skin Lesion Segmentation in Dermoscopic Images With Ensemble Deep Learning Methods
Tekijä: Manu Goyal, et al.
Julkaistu: (2020-01-01) -
Skin Lesion Segmentation in Dermoscopic Images with Combination of YOLO and GrabCut Algorithm
Tekijä: Halil Murat Ünver, et al.
Julkaistu: (2019-07-01) -
Skin lesion segmentation method for dermoscopic images with convolutional neural networks and semantic segmentation
Tekijä: Dang N.H. Thanh, et al.
Julkaistu: (2021-02-01)