Summary: | Spin Transfer Torque Random Access Memory (STT-RAM) is an emerging Non-Volatile Memory (NVM) technology that has garnered attention to overcome the drawbacks of conventional CMOS-based technologies. However, such technologies must be evaluated before deployment under real workloads and architecture. But there is a lack of available open-source STT-RAM-based system evaluation framework, which hampers research and experimentation and impacts the adoption of STT-RAM in a system. This paper proposes a novel, extendable STT-RAM memory controller design integrated inside the gem5 simulator. Our framework enables understanding various aspects of STT-RAM, i.e., power, delay, clock cycles, energy, and system throughput. We will open-source our HOPE framework, which will fuel research and aid in accelerating the development of future system architectures based on STT-RAM. It will also facilitate the user for further tool enhancement.
|