Hyers–Ulam stability for a partial difference equation

Under the exponential trichotomy condition we study the Hyers–Ulam stability for the linear partial difference equation: \[ x_{n+1,m}=A_nx_{n,m}+B_{n,m}x_{n,m+1}+f(x_{n,m}),\qquad n,m\in \mathbb{Z} \] where $A_n$ is a $k\times k$ matrix whose elements are sequences of $n$, $B_{n,m}$ is a $k\times...

Full description

Bibliographic Details
Main Authors: Konstantinos Konstantinidis, Garyfalos Papaschinopoulos, Christos Schinas
Format: Article
Language:English
Published: University of Szeged 2021-09-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=9350
_version_ 1797830462641537024
author Konstantinos Konstantinidis
Garyfalos Papaschinopoulos
Christos Schinas
author_facet Konstantinos Konstantinidis
Garyfalos Papaschinopoulos
Christos Schinas
author_sort Konstantinos Konstantinidis
collection DOAJ
description Under the exponential trichotomy condition we study the Hyers–Ulam stability for the linear partial difference equation: \[ x_{n+1,m}=A_nx_{n,m}+B_{n,m}x_{n,m+1}+f(x_{n,m}),\qquad n,m\in \mathbb{Z} \] where $A_n$ is a $k\times k$ matrix whose elements are sequences of $n$, $B_{n,m}$ is a $k\times k$ matrix whose elements are double sequences of $m,n$ and $f:\mathbb{R}^k\rightarrow \mathbb{R}^k$ is a vector function. We also investigate the Hyers–Ulam stability in the case where the matrices $A_n, B_{n,m}$ and the vector function $f=f_{n,m}$ are constant.
first_indexed 2024-04-09T13:36:27Z
format Article
id doaj.art-bcf86dbc30e44081b8855fc96814d5bb
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:36:27Z
publishDate 2021-09-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-bcf86dbc30e44081b8855fc96814d5bb2023-05-09T07:53:11ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752021-09-0120216711310.14232/ejqtde.2021.1.679350Hyers–Ulam stability for a partial difference equationKonstantinos Konstantinidis0Garyfalos Papaschinopoulos1Christos Schinas2School of Engineering, Democritus University of Thrace, Xanthi, GreeceDemocritus University of Thrace, School of Engineering, Xanthi, Greece School of Engineering, Democritus University of Thrace, Xanthi, 67100, GreeceUnder the exponential trichotomy condition we study the Hyers–Ulam stability for the linear partial difference equation: \[ x_{n+1,m}=A_nx_{n,m}+B_{n,m}x_{n,m+1}+f(x_{n,m}),\qquad n,m\in \mathbb{Z} \] where $A_n$ is a $k\times k$ matrix whose elements are sequences of $n$, $B_{n,m}$ is a $k\times k$ matrix whose elements are double sequences of $m,n$ and $f:\mathbb{R}^k\rightarrow \mathbb{R}^k$ is a vector function. We also investigate the Hyers–Ulam stability in the case where the matrices $A_n, B_{n,m}$ and the vector function $f=f_{n,m}$ are constant.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=9350partial difference equationshyers–ulam stabilityexponential trichotomy.
spellingShingle Konstantinos Konstantinidis
Garyfalos Papaschinopoulos
Christos Schinas
Hyers–Ulam stability for a partial difference equation
Electronic Journal of Qualitative Theory of Differential Equations
partial difference equations
hyers–ulam stability
exponential trichotomy.
title Hyers–Ulam stability for a partial difference equation
title_full Hyers–Ulam stability for a partial difference equation
title_fullStr Hyers–Ulam stability for a partial difference equation
title_full_unstemmed Hyers–Ulam stability for a partial difference equation
title_short Hyers–Ulam stability for a partial difference equation
title_sort hyers ulam stability for a partial difference equation
topic partial difference equations
hyers–ulam stability
exponential trichotomy.
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=9350
work_keys_str_mv AT konstantinoskonstantinidis hyersulamstabilityforapartialdifferenceequation
AT garyfalospapaschinopoulos hyersulamstabilityforapartialdifferenceequation
AT christosschinas hyersulamstabilityforapartialdifferenceequation