Hydrogen gas promotes the adventitious rooting in cucumber under cadmium stress.
Hydrogen gas (H2) plays an important role in plant development and stress responses. Here, cucumber (Cucumis sativus L.) explants were used to investigate the roles of H2 in adventitious root development under cadmium (Cd) stress and its physiological mechanism. The results showed that hydrogen-rich...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2019-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0212639 |
_version_ | 1818588938948837376 |
---|---|
author | Bo Wang Biting Bian Chunlei Wang Changxia Li Hua Fang Jing Zhang Dengjing Huang Jianqiang Huo Weibiao Liao |
author_facet | Bo Wang Biting Bian Chunlei Wang Changxia Li Hua Fang Jing Zhang Dengjing Huang Jianqiang Huo Weibiao Liao |
author_sort | Bo Wang |
collection | DOAJ |
description | Hydrogen gas (H2) plays an important role in plant development and stress responses. Here, cucumber (Cucumis sativus L.) explants were used to investigate the roles of H2 in adventitious root development under cadmium (Cd) stress and its physiological mechanism. The results showed that hydrogen-rich water (HRW) promoted adventitious rooting under Cd stress and 50% HRW obtained the maximal biological response. Compared with Cd treatment, HRW + Cd treatment significantly reduced the content of malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide radical (O2-), thiobarbituric acid reactive substances (TBARS), ascorbic acid (AsA) and reduced glutathione (GSH), as well as relative electrical conductivity (REC), lipoxygenase (LOX) activity, AsA/docosahexaenoic acid (DHA) ratio, and GSH/oxidized glutathione (GSSG) ratio, while increasing DHA and GSSG content. HRW + Cd treatment also significantly increased in the activity and related gene expression of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR). Additionally, HRW + Cd treatment increased the contents of osmotic adjustment substances, as well as the activities of peroxidase (POD) and polyphenol oxidase (PPO), while significantly decreasing indoleacetic acid oxidase (IAAO) activity. In summary, H2 could induce adventitious rooting under Cd stress by decreasing the oxidative damage, increasing osmotic adjustment substance content and regulating rooting-related enzyme activity. |
first_indexed | 2024-12-16T09:32:43Z |
format | Article |
id | doaj.art-bd11661c240046cd9343aced37ab186b |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-16T09:32:43Z |
publishDate | 2019-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-bd11661c240046cd9343aced37ab186b2022-12-21T22:36:29ZengPublic Library of Science (PLoS)PLoS ONE1932-62032019-01-01142e021263910.1371/journal.pone.0212639Hydrogen gas promotes the adventitious rooting in cucumber under cadmium stress.Bo WangBiting BianChunlei WangChangxia LiHua FangJing ZhangDengjing HuangJianqiang HuoWeibiao LiaoHydrogen gas (H2) plays an important role in plant development and stress responses. Here, cucumber (Cucumis sativus L.) explants were used to investigate the roles of H2 in adventitious root development under cadmium (Cd) stress and its physiological mechanism. The results showed that hydrogen-rich water (HRW) promoted adventitious rooting under Cd stress and 50% HRW obtained the maximal biological response. Compared with Cd treatment, HRW + Cd treatment significantly reduced the content of malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide radical (O2-), thiobarbituric acid reactive substances (TBARS), ascorbic acid (AsA) and reduced glutathione (GSH), as well as relative electrical conductivity (REC), lipoxygenase (LOX) activity, AsA/docosahexaenoic acid (DHA) ratio, and GSH/oxidized glutathione (GSSG) ratio, while increasing DHA and GSSG content. HRW + Cd treatment also significantly increased in the activity and related gene expression of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR). Additionally, HRW + Cd treatment increased the contents of osmotic adjustment substances, as well as the activities of peroxidase (POD) and polyphenol oxidase (PPO), while significantly decreasing indoleacetic acid oxidase (IAAO) activity. In summary, H2 could induce adventitious rooting under Cd stress by decreasing the oxidative damage, increasing osmotic adjustment substance content and regulating rooting-related enzyme activity.https://doi.org/10.1371/journal.pone.0212639 |
spellingShingle | Bo Wang Biting Bian Chunlei Wang Changxia Li Hua Fang Jing Zhang Dengjing Huang Jianqiang Huo Weibiao Liao Hydrogen gas promotes the adventitious rooting in cucumber under cadmium stress. PLoS ONE |
title | Hydrogen gas promotes the adventitious rooting in cucumber under cadmium stress. |
title_full | Hydrogen gas promotes the adventitious rooting in cucumber under cadmium stress. |
title_fullStr | Hydrogen gas promotes the adventitious rooting in cucumber under cadmium stress. |
title_full_unstemmed | Hydrogen gas promotes the adventitious rooting in cucumber under cadmium stress. |
title_short | Hydrogen gas promotes the adventitious rooting in cucumber under cadmium stress. |
title_sort | hydrogen gas promotes the adventitious rooting in cucumber under cadmium stress |
url | https://doi.org/10.1371/journal.pone.0212639 |
work_keys_str_mv | AT bowang hydrogengaspromotestheadventitiousrootingincucumberundercadmiumstress AT bitingbian hydrogengaspromotestheadventitiousrootingincucumberundercadmiumstress AT chunleiwang hydrogengaspromotestheadventitiousrootingincucumberundercadmiumstress AT changxiali hydrogengaspromotestheadventitiousrootingincucumberundercadmiumstress AT huafang hydrogengaspromotestheadventitiousrootingincucumberundercadmiumstress AT jingzhang hydrogengaspromotestheadventitiousrootingincucumberundercadmiumstress AT dengjinghuang hydrogengaspromotestheadventitiousrootingincucumberundercadmiumstress AT jianqianghuo hydrogengaspromotestheadventitiousrootingincucumberundercadmiumstress AT weibiaoliao hydrogengaspromotestheadventitiousrootingincucumberundercadmiumstress |