Quartz-Enhanced Photoacoustic Detection of Ethane in the Near-IR Exploiting a Highly Performant Spectrophone

In this paper the performances of two spectrophones for quartz-enhanced photoacoustic spectroscopy (QEPAS)-based ethane gas sensing were tested and compared. Each spectrophone contains a quartz tuning fork (QTF) acoustically coupled with a pair of micro-resonator tubes and having a fundamental mode...

Full description

Bibliographic Details
Main Authors: Fabrizio Sgobba, Giansergio Menduni, Stefano Dello Russo, Angelo Sampaolo, Pietro Patimisco, Marilena Giglio, Ezio Ranieri, Vittorio M. N. Passaro, Frank K. Tittel, Vincenzo Spagnolo
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/7/2447
Description
Summary:In this paper the performances of two spectrophones for quartz-enhanced photoacoustic spectroscopy (QEPAS)-based ethane gas sensing were tested and compared. Each spectrophone contains a quartz tuning fork (QTF) acoustically coupled with a pair of micro-resonator tubes and having a fundamental mode resonance frequency of 32.7 kHz (standard QTF) and 12.4 kHz (custom QTF), respectively. The spectrophones were implemented into a QEPAS acoustic detection module (ADM) together with a preamplifier having a gain bandwidth optimized for the respective QTF resonance frequency. Each ADM was tested for ethane QEPAS sensing, employing a custom pigtailed laser diode emitting at ~1684 nm as the exciting light source. By flowing 1% ethane at atmospheric pressure, a signal-to-noise ratio of 453.2 was measured by implementing the 12.4 kHz QTF-based ADM, ~3.3 times greater than the value obtained using a standard QTF. The minimum ethane concentration detectable using a 100 ms lock-in integration time achieving the 12.4 kHz custom QTF was 22 ppm.
ISSN:2076-3417