Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model
<p>This study presents an updated evaluation of stratospheric ozone profile trends in the 60<span class="inline-formula"><sup>∘</sup></span> S–60<span class="inline-formula"><sup>∘</sup></span> N latitude range over the 2000–2...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2022-09-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/22/11657/2022/acp-22-11657-2022.pdf |
_version_ | 1798003378526093312 |
---|---|
author | S. Godin-Beekmann N. Azouz V. F. Sofieva D. Hubert I. Petropavlovskikh P. Effertz G. Ancellet D. A. Degenstein D. Zawada L. Froidevaux S. Frith J. Wild S. Davis W. Steinbrecht T. Leblanc R. Querel K. Tourpali R. Damadeo E. Maillard Barras R. Stübi C. Vigouroux C. Arosio G. Nedoluha I. Boyd R. Van Malderen E. Mahieu D. Smale R. Sussmann |
author_facet | S. Godin-Beekmann N. Azouz V. F. Sofieva D. Hubert I. Petropavlovskikh P. Effertz G. Ancellet D. A. Degenstein D. Zawada L. Froidevaux S. Frith J. Wild S. Davis W. Steinbrecht T. Leblanc R. Querel K. Tourpali R. Damadeo E. Maillard Barras R. Stübi C. Vigouroux C. Arosio G. Nedoluha I. Boyd R. Van Malderen E. Mahieu D. Smale R. Sussmann |
author_sort | S. Godin-Beekmann |
collection | DOAJ |
description | <p>This study presents an updated evaluation of stratospheric ozone profile
trends in the 60<span class="inline-formula"><sup>∘</sup></span> S–60<span class="inline-formula"><sup>∘</sup></span> N latitude range over the
2000–2020 period using an updated version of the Long-term Ozone Trends
and Uncertainties in the Stratosphere (LOTUS) regression model that was used
to evaluate such trends up to 2016 for the last WMO Ozone Assessment (2018).
In addition to the derivation of detailed trends as a function of latitude
and vertical coordinates, the regressions are performed with the datasets
averaged over broad latitude bands, i.e. 60–35<span class="inline-formula"><sup>∘</sup></span> S,
20<span class="inline-formula"><sup>∘</sup></span> S–20<span class="inline-formula"><sup>∘</sup></span> N and 35–60<span class="inline-formula"><sup>∘</sup></span> N. The
same methodology as in the last assessment is applied to combine trends in
these broad latitude bands in order to compare the results with the previous
studies. Longitudinally resolved merged satellite records are also
considered in order to provide a better comparison with trends retrieved
from ground-based records, e.g. lidar, ozonesondes, Umkehr, microwave and
Fourier transform infrared (FTIR) spectrometers at selected stations where
long-term time series are available. The study includes a comparison with
trends derived from the REF-C2 simulations of the Chemistry Climate Model
Initiative (CCMI-1). This work confirms past results showing an ozone
increase in the upper stratosphere, which is now significant in the three
broad latitude bands. The increase is largest in the Northern and Southern Hemisphere midlatitudes, with <span class="inline-formula">∼2.2</span> <span class="inline-formula">±</span> 0.7 % per decade at
<span class="inline-formula">∼2.1</span> hPa and <span class="inline-formula">∼2.1</span> <span class="inline-formula">±</span> 0.6 % per decade at
<span class="inline-formula">∼3.2</span> hPa respectively compared to <span class="inline-formula">∼1.6</span> <span class="inline-formula">±</span> 0.6 % per decade at <span class="inline-formula">∼2.6</span> hPa in the tropics. New trend
signals have emerged from the records, such as a significant decrease in
ozone in the tropics around 35 hPa and a non-significant increase in ozone
in the southern midlatitudes at about 20 hPa. Non-significant negative
ozone trends are derived in the lowermost stratosphere, with the most
pronounced trends in the tropics. While a very good agreement is obtained
between trends from merged satellite records and the CCMI-1 REF-C2
simulation in the upper stratosphere, observed negative trends in the lower
stratosphere are not reproduced by models at southern and, in particular, at
northern midlatitudes, where models report an ozone increase. However, the
lower-stratospheric trend uncertainties are quite large, for both measured
and modelled trends. Finally, 2000–2020 stratospheric ozone trends derived
from the ground-based and longitudinally resolved satellite records are in
reasonable agreement over the European Alpine and tropical regions, while at
the Lauder station in the Southern Hemisphere midlatitudes they show some
differences.</p> |
first_indexed | 2024-04-11T12:06:28Z |
format | Article |
id | doaj.art-bd187cf485834713ab837ef740cd1fb7 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-04-11T12:06:28Z |
publishDate | 2022-09-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-bd187cf485834713ab837ef740cd1fb72022-12-22T04:24:42ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-09-0122116571167310.5194/acp-22-11657-2022Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model S. Godin-Beekmann0N. Azouz1V. F. Sofieva2D. Hubert3I. Petropavlovskikh4P. Effertz5G. Ancellet6D. A. Degenstein7D. Zawada8L. Froidevaux9S. Frith10J. Wild11S. Davis12W. Steinbrecht13T. Leblanc14R. Querel15K. Tourpali16R. Damadeo17E. Maillard Barras18R. Stübi19C. Vigouroux20C. Arosio21G. Nedoluha22I. Boyd23R. Van Malderen24E. Mahieu25D. Smale26R. Sussmann27LATMOS, Sorbonne Université, UVSQ, CNRS, Paris, FranceLATMOS, Sorbonne Université, UVSQ, CNRS, Paris, FranceFinnish Meteorological Institute, Helsinki, FinlandRoyal Belgian Institute for Space Aeronomy (BIRA-IASB), Uccle, BelgiumCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USALATMOS, Sorbonne Université, UVSQ, CNRS, Paris, FranceUniversity of Saskatchewan, Saskatun, CanadaUniversity of Saskatchewan, Saskatun, CanadaJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAScience Systems and Applications, Inc & NASA Goddard Space Flight Center, Greenbelt, MA, USAESSIC/UMD & NOAA/NESDIS/STAR, College Park, MD, USANOAA Chemical Sciences Laboratory, Boulder, CO, USADeutsche Wetterdienst, Hohenpeißenberg, GermanyJet Propulsion Laboratory, California Institute of Technology, Wrightwood, CA, USANational Institute of Water and Atmospheric Research (NIWA), Lauder, New ZealandAristotle University of Thessaloniki, Thessaloniki, GreeceNASA Langley Research Center, Hampton, VA, USAFederal Office of Meteorology and Climatology, MeteoSwiss, Payerne, SwitzerlandFederal Office of Meteorology and Climatology, MeteoSwiss, Payerne, SwitzerlandRoyal Belgian Institute for Space Aeronomy (BIRA-IASB), Uccle, BelgiumInstitute of Environmental Physics, Bremen University, Bremen, GermanyRemote Sensing Division, Naval Research Laboratory, Washington, DC, USABryan Scientific Consulting, Charlottesville, VA, USARoyal Meteorological Institute, Uccle, BelgiumInstitute of Astrophysics and Geophysics, University of Liège, Liège, BelgiumNational Institute of Water and Atmospheric Research (NIWA), Lauder, New ZealandKarlsruhe Institute of Technology (KIT), IMK-IFU, Garmisch-Partenkirchen, Germany<p>This study presents an updated evaluation of stratospheric ozone profile trends in the 60<span class="inline-formula"><sup>∘</sup></span> S–60<span class="inline-formula"><sup>∘</sup></span> N latitude range over the 2000–2020 period using an updated version of the Long-term Ozone Trends and Uncertainties in the Stratosphere (LOTUS) regression model that was used to evaluate such trends up to 2016 for the last WMO Ozone Assessment (2018). In addition to the derivation of detailed trends as a function of latitude and vertical coordinates, the regressions are performed with the datasets averaged over broad latitude bands, i.e. 60–35<span class="inline-formula"><sup>∘</sup></span> S, 20<span class="inline-formula"><sup>∘</sup></span> S–20<span class="inline-formula"><sup>∘</sup></span> N and 35–60<span class="inline-formula"><sup>∘</sup></span> N. The same methodology as in the last assessment is applied to combine trends in these broad latitude bands in order to compare the results with the previous studies. Longitudinally resolved merged satellite records are also considered in order to provide a better comparison with trends retrieved from ground-based records, e.g. lidar, ozonesondes, Umkehr, microwave and Fourier transform infrared (FTIR) spectrometers at selected stations where long-term time series are available. The study includes a comparison with trends derived from the REF-C2 simulations of the Chemistry Climate Model Initiative (CCMI-1). This work confirms past results showing an ozone increase in the upper stratosphere, which is now significant in the three broad latitude bands. The increase is largest in the Northern and Southern Hemisphere midlatitudes, with <span class="inline-formula">∼2.2</span> <span class="inline-formula">±</span> 0.7 % per decade at <span class="inline-formula">∼2.1</span> hPa and <span class="inline-formula">∼2.1</span> <span class="inline-formula">±</span> 0.6 % per decade at <span class="inline-formula">∼3.2</span> hPa respectively compared to <span class="inline-formula">∼1.6</span> <span class="inline-formula">±</span> 0.6 % per decade at <span class="inline-formula">∼2.6</span> hPa in the tropics. New trend signals have emerged from the records, such as a significant decrease in ozone in the tropics around 35 hPa and a non-significant increase in ozone in the southern midlatitudes at about 20 hPa. Non-significant negative ozone trends are derived in the lowermost stratosphere, with the most pronounced trends in the tropics. While a very good agreement is obtained between trends from merged satellite records and the CCMI-1 REF-C2 simulation in the upper stratosphere, observed negative trends in the lower stratosphere are not reproduced by models at southern and, in particular, at northern midlatitudes, where models report an ozone increase. However, the lower-stratospheric trend uncertainties are quite large, for both measured and modelled trends. Finally, 2000–2020 stratospheric ozone trends derived from the ground-based and longitudinally resolved satellite records are in reasonable agreement over the European Alpine and tropical regions, while at the Lauder station in the Southern Hemisphere midlatitudes they show some differences.</p>https://acp.copernicus.org/articles/22/11657/2022/acp-22-11657-2022.pdf |
spellingShingle | S. Godin-Beekmann N. Azouz V. F. Sofieva D. Hubert I. Petropavlovskikh P. Effertz G. Ancellet D. A. Degenstein D. Zawada L. Froidevaux S. Frith J. Wild S. Davis W. Steinbrecht T. Leblanc R. Querel K. Tourpali R. Damadeo E. Maillard Barras R. Stübi C. Vigouroux C. Arosio G. Nedoluha I. Boyd R. Van Malderen E. Mahieu D. Smale R. Sussmann Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model Atmospheric Chemistry and Physics |
title | Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model |
title_full | Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model |
title_fullStr | Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model |
title_full_unstemmed | Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model |
title_short | Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model |
title_sort | updated trends of the stratospheric ozone vertical distribution in the 60° thinsp s 60° thinsp n latitude range based on the lotus regression model |
url | https://acp.copernicus.org/articles/22/11657/2022/acp-22-11657-2022.pdf |
work_keys_str_mv | AT sgodinbeekmann updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT nazouz updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT vfsofieva updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT dhubert updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT ipetropavlovskikh updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT peffertz updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT gancellet updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT dadegenstein updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT dzawada updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT lfroidevaux updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT sfrith updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT jwild updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT sdavis updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT wsteinbrecht updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT tleblanc updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT rquerel updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT ktourpali updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT rdamadeo updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT emaillardbarras updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT rstubi updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT cvigouroux updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT carosio updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT gnedoluha updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT iboyd updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT rvanmalderen updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT emahieu updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT dsmale updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel AT rsussmann updatedtrendsofthestratosphericozoneverticaldistributioninthe60thinsps60thinspnlatituderangebasedonthelotusregressionmodel |