New Applications of the Bernardi Integral Operator

Let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>A</mi> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formu...

Full description

Bibliographic Details
Main Authors: Shigeyoshi Owa, H. Özlem Güney
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/7/1180
_version_ 1797562123320033280
author Shigeyoshi Owa
H. Özlem Güney
author_facet Shigeyoshi Owa
H. Özlem Güney
author_sort Shigeyoshi Owa
collection DOAJ
description Let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>A</mi> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> be the class of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> which are analytic <i>p</i>-valent functions in the closed unit disk <inline-formula> <math display="inline"> <semantics> <mrow> <mover> <mi mathvariant="double-struck">U</mi> <mo>¯</mo> </mover> <mo>=</mo> <mfenced separators="" open="{" close="}"> <mi>z</mi> <mo>∈</mo> <mi mathvariant="double-struck">C</mi> <mo>:</mo> <mfenced open="|" close="|"> <mi>z</mi> </mfenced> <mo>≤</mo> <mn>1</mn> </mfenced> </mrow> </semantics> </math> </inline-formula>. The expression <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>B</mi> <mrow> <mo>−</mo> <mi>m</mi> <mo>−</mo> <mi>λ</mi> </mrow> </msub> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> is defined by using fractional integrals of order <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula> for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> <mo>∈</mo> <mi>A</mi> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> When <inline-formula> <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>B</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> becomes Bernardi integral operator. Using the fractional integral <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>B</mi> <mrow> <mo>−</mo> <mi>m</mi> <mo>−</mo> <mi>λ</mi> </mrow> </msub> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> the subclass <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mfenced separators="" open="(" close=")"> <msub> <mi>α</mi> <mi>s</mi> </msub> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>ρ</mi> <mo>;</mo> <mi>m</mi> <mo>,</mo> <mi>λ</mi> </mfenced> </mrow> </semantics> </math> </inline-formula> of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>A</mi> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is introduced. In the present paper, we discuss some interesting properties for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> concerning with the class <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mfenced separators="" open="(" close=")"> <msub> <mi>α</mi> <mi>s</mi> </msub> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>ρ</mi> <mo>;</mo> <mi>m</mi> <mo>,</mo> <mi>λ</mi> </mfenced> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> Also, some interesting examples for our results will be considered.
first_indexed 2024-03-10T18:24:01Z
format Article
id doaj.art-bd30784d923949fcb29dd72346cf21c8
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T18:24:01Z
publishDate 2020-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-bd30784d923949fcb29dd72346cf21c82023-11-20T07:10:02ZengMDPI AGMathematics2227-73902020-07-0187118010.3390/math8071180New Applications of the Bernardi Integral OperatorShigeyoshi Owa0H. Özlem Güney1“1 Decembrie 1918” University Alba Iulia, 510009 Alba-Iulia, RomaniaDepartment of Mathematics, Faculty of Science Dicle University, 21280 Diyarbakır, TurkeyLet <inline-formula> <math display="inline"> <semantics> <mrow> <mi>A</mi> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> be the class of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> which are analytic <i>p</i>-valent functions in the closed unit disk <inline-formula> <math display="inline"> <semantics> <mrow> <mover> <mi mathvariant="double-struck">U</mi> <mo>¯</mo> </mover> <mo>=</mo> <mfenced separators="" open="{" close="}"> <mi>z</mi> <mo>∈</mo> <mi mathvariant="double-struck">C</mi> <mo>:</mo> <mfenced open="|" close="|"> <mi>z</mi> </mfenced> <mo>≤</mo> <mn>1</mn> </mfenced> </mrow> </semantics> </math> </inline-formula>. The expression <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>B</mi> <mrow> <mo>−</mo> <mi>m</mi> <mo>−</mo> <mi>λ</mi> </mrow> </msub> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> is defined by using fractional integrals of order <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula> for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> <mo>∈</mo> <mi>A</mi> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> When <inline-formula> <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>B</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> becomes Bernardi integral operator. Using the fractional integral <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>B</mi> <mrow> <mo>−</mo> <mi>m</mi> <mo>−</mo> <mi>λ</mi> </mrow> </msub> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> the subclass <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mfenced separators="" open="(" close=")"> <msub> <mi>α</mi> <mi>s</mi> </msub> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>ρ</mi> <mo>;</mo> <mi>m</mi> <mo>,</mo> <mi>λ</mi> </mfenced> </mrow> </semantics> </math> </inline-formula> of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>A</mi> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is introduced. In the present paper, we discuss some interesting properties for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> concerning with the class <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mfenced separators="" open="(" close=")"> <msub> <mi>α</mi> <mi>s</mi> </msub> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>ρ</mi> <mo>;</mo> <mi>m</mi> <mo>,</mo> <mi>λ</mi> </mfenced> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> Also, some interesting examples for our results will be considered.https://www.mdpi.com/2227-7390/8/7/1180analytic <i>p</i>-valent functionBernardi integral operatorLibera integral operatorfractional integralgamma functionMiller–Mocanu lemma
spellingShingle Shigeyoshi Owa
H. Özlem Güney
New Applications of the Bernardi Integral Operator
Mathematics
analytic <i>p</i>-valent function
Bernardi integral operator
Libera integral operator
fractional integral
gamma function
Miller–Mocanu lemma
title New Applications of the Bernardi Integral Operator
title_full New Applications of the Bernardi Integral Operator
title_fullStr New Applications of the Bernardi Integral Operator
title_full_unstemmed New Applications of the Bernardi Integral Operator
title_short New Applications of the Bernardi Integral Operator
title_sort new applications of the bernardi integral operator
topic analytic <i>p</i>-valent function
Bernardi integral operator
Libera integral operator
fractional integral
gamma function
Miller–Mocanu lemma
url https://www.mdpi.com/2227-7390/8/7/1180
work_keys_str_mv AT shigeyoshiowa newapplicationsofthebernardiintegraloperator
AT hozlemguney newapplicationsofthebernardiintegraloperator