Organelle-Specific Nitric Oxide Detection in Living Cells via HaloTag Protein Labeling.

Nitric oxide (NO) is a membrane-permeable signaling molecule that is constantly produced, transferred, and consumed in vivo. NO participates and plays important roles in multiple biological processes. However, spatiotemporal imaging of NO in living cells is challenging. To fill the gap in currently...

Full description

Bibliographic Details
Main Authors: Jianhua Wang, Yuzheng Zhao, Chao Wang, Qian Zhu, Zengmin Du, Aiguo Hu, Yi Yang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4414533?pdf=render
Description
Summary:Nitric oxide (NO) is a membrane-permeable signaling molecule that is constantly produced, transferred, and consumed in vivo. NO participates and plays important roles in multiple biological processes. However, spatiotemporal imaging of NO in living cells is challenging. To fill the gap in currently used techniques, we exploited the versatility of HaloTag technology and synthesized a novel organelle-targetable fluorescent probe called HTDAF-2DA. We demonstrate the utility of the probe by monitoring subcellular NO dynamics. The developed strategy enables precise determination of local NO function.
ISSN:1932-6203