Semiclassical bounds for spectra of biharmonic operators

We provide complementary semiclassical bounds for the Riesz means R1(z) of the eigenvalues of various biharmonic operators, with a second term in the expected power of z. The method we discuss makes use of the averaged variational principle (AVP), and yields two-sided bounds for individual eigenvalu...

Full description

Bibliographic Details
Main Authors: Davide Buoso, Luigi Provenzano, Joachim Stubbe
Format: Article
Language:English
Published: Sapienza Università Editrice 2022-06-01
Series:Rendiconti di Matematica e delle Sue Applicazioni
Subjects:
Online Access:https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2022(4)/267-314.pdf
_version_ 1797821787949498368
author Davide Buoso
Luigi Provenzano
Joachim Stubbe
author_facet Davide Buoso
Luigi Provenzano
Joachim Stubbe
author_sort Davide Buoso
collection DOAJ
description We provide complementary semiclassical bounds for the Riesz means R1(z) of the eigenvalues of various biharmonic operators, with a second term in the expected power of z. The method we discuss makes use of the averaged variational principle (AVP), and yields two-sided bounds for individual eigenvalues, which are semiclassically sharp. The AVP also yields comparisons with Riesz means of different operators, in particular Laplacians.
first_indexed 2024-03-13T09:57:58Z
format Article
id doaj.art-bd5731d272dd4b118b509b86a31fc0dd
institution Directory Open Access Journal
issn 1120-7183
2532-3350
language English
last_indexed 2024-03-13T09:57:58Z
publishDate 2022-06-01
publisher Sapienza Università Editrice
record_format Article
series Rendiconti di Matematica e delle Sue Applicazioni
spelling doaj.art-bd5731d272dd4b118b509b86a31fc0dd2023-05-23T13:03:02ZengSapienza Università EditriceRendiconti di Matematica e delle Sue Applicazioni1120-71832532-33502022-06-01433-4267314Semiclassical bounds for spectra of biharmonic operatorsDavide Buoso0Luigi Provenzano1Joachim Stubbe2Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica (DiSSTE), Universit degli Studi del Piemonte Orientale “A. Avogadro”, Complesso S. Giuseppe - piazza Sant’ Eusebio 5, 13100 Vercelli (Italy)Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Universit`a di Roma, Via Antonio Scarpa 16, 00161 Roma (Italy)EPFL, SB MATH SCI-SB-JS, Station 8, CH-1015 Lausanne (Switzerland)We provide complementary semiclassical bounds for the Riesz means R1(z) of the eigenvalues of various biharmonic operators, with a second term in the expected power of z. The method we discuss makes use of the averaged variational principle (AVP), and yields two-sided bounds for individual eigenvalues, which are semiclassically sharp. The AVP also yields comparisons with Riesz means of different operators, in particular Laplacians.https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2022(4)/267-314.pdfbiharmonic operatorriesz meanseigenvalue asymptoticssemiclassical bounds for eigenvaluesaveraged variational principle
spellingShingle Davide Buoso
Luigi Provenzano
Joachim Stubbe
Semiclassical bounds for spectra of biharmonic operators
Rendiconti di Matematica e delle Sue Applicazioni
biharmonic operator
riesz means
eigenvalue asymptotics
semiclassical bounds for eigenvalues
averaged variational principle
title Semiclassical bounds for spectra of biharmonic operators
title_full Semiclassical bounds for spectra of biharmonic operators
title_fullStr Semiclassical bounds for spectra of biharmonic operators
title_full_unstemmed Semiclassical bounds for spectra of biharmonic operators
title_short Semiclassical bounds for spectra of biharmonic operators
title_sort semiclassical bounds for spectra of biharmonic operators
topic biharmonic operator
riesz means
eigenvalue asymptotics
semiclassical bounds for eigenvalues
averaged variational principle
url https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2022(4)/267-314.pdf
work_keys_str_mv AT davidebuoso semiclassicalboundsforspectraofbiharmonicoperators
AT luigiprovenzano semiclassicalboundsforspectraofbiharmonicoperators
AT joachimstubbe semiclassicalboundsforspectraofbiharmonicoperators