Optimal Battery Energy Storage System Management with Wind Turbine Generator in Unbalanced Low Power Distribution System

Wind Turbine Generators (WTG) are being integrated into distribution systems on a large scale worldwide as part of a global effort to capture green energy. Wind turbine generator intermittency may be mitigated by Battery Energy Storage Systems (BESS), which have emerged as a viable option in recent...

Full description

Bibliographic Details
Main Authors: Samarjit Patnaik, Manas Ranjan Nayak, Meera Viswavandya
Format: Article
Language:English
Published: VSB-Technical University of Ostrava 2022-01-01
Series:Advances in Electrical and Electronic Engineering
Subjects:
Online Access:http://advances.utc.sk/index.php/AEEE/article/view/4632
Description
Summary:Wind Turbine Generators (WTG) are being integrated into distribution systems on a large scale worldwide as part of a global effort to capture green energy. Wind turbine generator intermittency may be mitigated by Battery Energy Storage Systems (BESS), which have emerged as a viable option in recent years. To find the best position and capacity for wind power generation and BESS charging/discharging dispatches, a Red Fox Optimisation (RFO) algorithm is used while optimising the imbalanced distribution network’s performance under technological restrictions. The charging or discharging criteria for this method is the average feeder load. The charging techniques for BESS using WTG and Sustainable Average Load (SAL) are evaluated in terms of the free-running mode of dispatch cycle. The suggested approach is tested on an IEEE-37 bus Unbalanced Radial Distribution Network (UDN). It has been shown that the suggested method enhances several performance objectives of the distribution system.
ISSN:1336-1376
1804-3119