Investigation of the transcriptomic response in Atlantic salmon (Salmo salar) gill exposed to Paramoeba perurans during early onset of disease
Abstract Amoebic Gill Disease (AGD), caused by the protozoan extracellular parasite Paramoeba perurans (P. perurans) is a disease affecting Atlantic salmon (Salmo salar). This study investigated the gill transcriptomic profile of pre-clinical AGD using RNA-sequencing (RNA-seq) technology. RNA-seq li...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2021-10-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-021-99996-1 |
_version_ | 1818574978898984960 |
---|---|
author | Anita Talbot Laura Gargan Grainne Moran Louis Prudent Ian O’Connor Luca Mirimin Jens Carlsson Eugene MacCarthy |
author_facet | Anita Talbot Laura Gargan Grainne Moran Louis Prudent Ian O’Connor Luca Mirimin Jens Carlsson Eugene MacCarthy |
author_sort | Anita Talbot |
collection | DOAJ |
description | Abstract Amoebic Gill Disease (AGD), caused by the protozoan extracellular parasite Paramoeba perurans (P. perurans) is a disease affecting Atlantic salmon (Salmo salar). This study investigated the gill transcriptomic profile of pre-clinical AGD using RNA-sequencing (RNA-seq) technology. RNA-seq libraries generated at 0, 4, 7, 14 and 16 days post infection (dpi) identified 19,251 differentially expressed genes (DEGs) of which 56.2% were up-regulated. DEGs mapped to 224 Gene Ontology (GO) terms including 140 biological processes (BP), 45 cellular components (CC), and 39 molecular functions (MF). A total of 27 reference pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and 15 Reactome gene sets were identified. The RNA-seq data was validated using real-time, quantitative PCR (qPCR). A host immune response though the activation of complement and the acute phase genes was evident at 7 dpi, with a concurrent immune suppression involving cytokine signalling, notably in interleukins, interferon regulatory factors and tumour necrosis factor-alpha (tnf-α) genes. Down-regulated gene expression with involvement in receptor signalling pathways (NOD-like, Toll-like and RIG-1) were also identified. The results of this study support the theory that P. perurans can evade immune surveillance during the initial stages of gill colonisation through interference of signal transduction pathways. |
first_indexed | 2024-12-15T00:33:49Z |
format | Article |
id | doaj.art-bd70b594d4014452b2c24423c6cbe599 |
institution | Directory Open Access Journal |
issn | 2045-2322 |
language | English |
last_indexed | 2024-12-15T00:33:49Z |
publishDate | 2021-10-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Scientific Reports |
spelling | doaj.art-bd70b594d4014452b2c24423c6cbe5992022-12-21T22:41:52ZengNature PortfolioScientific Reports2045-23222021-10-0111111510.1038/s41598-021-99996-1Investigation of the transcriptomic response in Atlantic salmon (Salmo salar) gill exposed to Paramoeba perurans during early onset of diseaseAnita Talbot0Laura Gargan1Grainne Moran2Louis Prudent3Ian O’Connor4Luca Mirimin5Jens Carlsson6Eugene MacCarthy7Galway Mayo Institute of TechnologyUniversity College DublinGalway Mayo Institute of TechnologyGalway Mayo Institute of TechnologyGalway Mayo Institute of TechnologyGalway Mayo Institute of TechnologyUniversity College DublinGalway Mayo Institute of TechnologyAbstract Amoebic Gill Disease (AGD), caused by the protozoan extracellular parasite Paramoeba perurans (P. perurans) is a disease affecting Atlantic salmon (Salmo salar). This study investigated the gill transcriptomic profile of pre-clinical AGD using RNA-sequencing (RNA-seq) technology. RNA-seq libraries generated at 0, 4, 7, 14 and 16 days post infection (dpi) identified 19,251 differentially expressed genes (DEGs) of which 56.2% were up-regulated. DEGs mapped to 224 Gene Ontology (GO) terms including 140 biological processes (BP), 45 cellular components (CC), and 39 molecular functions (MF). A total of 27 reference pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and 15 Reactome gene sets were identified. The RNA-seq data was validated using real-time, quantitative PCR (qPCR). A host immune response though the activation of complement and the acute phase genes was evident at 7 dpi, with a concurrent immune suppression involving cytokine signalling, notably in interleukins, interferon regulatory factors and tumour necrosis factor-alpha (tnf-α) genes. Down-regulated gene expression with involvement in receptor signalling pathways (NOD-like, Toll-like and RIG-1) were also identified. The results of this study support the theory that P. perurans can evade immune surveillance during the initial stages of gill colonisation through interference of signal transduction pathways.https://doi.org/10.1038/s41598-021-99996-1 |
spellingShingle | Anita Talbot Laura Gargan Grainne Moran Louis Prudent Ian O’Connor Luca Mirimin Jens Carlsson Eugene MacCarthy Investigation of the transcriptomic response in Atlantic salmon (Salmo salar) gill exposed to Paramoeba perurans during early onset of disease Scientific Reports |
title | Investigation of the transcriptomic response in Atlantic salmon (Salmo salar) gill exposed to Paramoeba perurans during early onset of disease |
title_full | Investigation of the transcriptomic response in Atlantic salmon (Salmo salar) gill exposed to Paramoeba perurans during early onset of disease |
title_fullStr | Investigation of the transcriptomic response in Atlantic salmon (Salmo salar) gill exposed to Paramoeba perurans during early onset of disease |
title_full_unstemmed | Investigation of the transcriptomic response in Atlantic salmon (Salmo salar) gill exposed to Paramoeba perurans during early onset of disease |
title_short | Investigation of the transcriptomic response in Atlantic salmon (Salmo salar) gill exposed to Paramoeba perurans during early onset of disease |
title_sort | investigation of the transcriptomic response in atlantic salmon salmo salar gill exposed to paramoeba perurans during early onset of disease |
url | https://doi.org/10.1038/s41598-021-99996-1 |
work_keys_str_mv | AT anitatalbot investigationofthetranscriptomicresponseinatlanticsalmonsalmosalargillexposedtoparamoebaperuransduringearlyonsetofdisease AT lauragargan investigationofthetranscriptomicresponseinatlanticsalmonsalmosalargillexposedtoparamoebaperuransduringearlyonsetofdisease AT grainnemoran investigationofthetranscriptomicresponseinatlanticsalmonsalmosalargillexposedtoparamoebaperuransduringearlyonsetofdisease AT louisprudent investigationofthetranscriptomicresponseinatlanticsalmonsalmosalargillexposedtoparamoebaperuransduringearlyonsetofdisease AT ianoconnor investigationofthetranscriptomicresponseinatlanticsalmonsalmosalargillexposedtoparamoebaperuransduringearlyonsetofdisease AT lucamirimin investigationofthetranscriptomicresponseinatlanticsalmonsalmosalargillexposedtoparamoebaperuransduringearlyonsetofdisease AT jenscarlsson investigationofthetranscriptomicresponseinatlanticsalmonsalmosalargillexposedtoparamoebaperuransduringearlyonsetofdisease AT eugenemaccarthy investigationofthetranscriptomicresponseinatlanticsalmonsalmosalargillexposedtoparamoebaperuransduringearlyonsetofdisease |