A robust luminescent assay for screening alkyladenine DNA glycosylase inhibitors to overcome DNA repair and temozolomide drug resistance

Temozolomide (TMZ) is an anticancer agent used to treat glioblastoma, typically following radiation therapy and/or surgical resection. However, despite its effectiveness, at least 50% of patients do not respond to TMZ, which is associated with repair and/or tolerance of TMZ-induced DNA lesions. Stud...

Full description

Bibliographic Details
Main Authors: Ying-Qi Song, Guo-Dong Li, Dou Niu, Feng Chen, Shaozhen Jing, Vincent Kam Wai Wong, Wanhe Wang, Chung-Hang Leung
Format: Article
Language:English
Published: Elsevier 2023-05-01
Series:Journal of Pharmaceutical Analysis
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2095177923000710
Description
Summary:Temozolomide (TMZ) is an anticancer agent used to treat glioblastoma, typically following radiation therapy and/or surgical resection. However, despite its effectiveness, at least 50% of patients do not respond to TMZ, which is associated with repair and/or tolerance of TMZ-induced DNA lesions. Studies have demonstrated that alkyladenine DNA glycosylase (AAG), an enzyme that triggers the base excision repair (BER) pathway by excising TMZ-induced N3-methyladenine (3meA) and N7-methylguanine lesions, is overexpressed in glioblastoma tissues compared to normal tissues. Therefore, it is essential to develop a rapid and efficient screening method for AAG inhibitors to overcome TMZ resistance in glioblastomas. Herein, we report a robust time-resolved photoluminescence platform for identifying AAG inhibitors with improved sensitivity compared to conventional steady-state spectroscopic methods. As a proof-of-concept, this assay was used to screen 1440 food and drug administration-approved drugs against AAG, resulting in the repurposing of sunitinib as a potential AAG inhibitor. Sunitinib restored glioblastoma (GBM) cancer cell sensitivity to TMZ, inhibited GBM cell proliferation and stem cell characteristics, and induced GBM cell cycle arrest. Overall, this strategy offers a new method for the rapid identification of small-molecule inhibitors of BER enzyme activities that can prevent false negatives due to a fluorescent background.
ISSN:2095-1779