PEMILIHAN THRESHOLD OPTIMAL PADA ESTIMATOR REGRESI WAVELET THRESHOLDING DENGAN METODE CROSS VALIDASI

If x is a predictor variable and y is a response  variable of  the regression model y = f (x)+ Î with  f is a regression function which not yet been known and Î is independent random variable with mean 0 and variance , hence function f can be estimated by parametric and nonparametric approach. In th...

Full description

Bibliographic Details
Main Authors: Suparti Suparti, Tarno Tarno, Paula Meilina Dwi Hapsari
Format: Article
Language:English
Published: Universitas Diponegoro 2009-12-01
Series:Media Statistika
Online Access:https://ejournal.undip.ac.id/index.php/media_statistika/article/view/2495
_version_ 1818113821181476864
author Suparti Suparti
Tarno Tarno
Paula Meilina Dwi Hapsari
author_facet Suparti Suparti
Tarno Tarno
Paula Meilina Dwi Hapsari
author_sort Suparti Suparti
collection DOAJ
description If x is a predictor variable and y is a response  variable of  the regression model y = f (x)+ Î with  f is a regression function which not yet been known and Î is independent random variable with mean 0 and variance , hence function f can be estimated by parametric and nonparametric approach. In this paper function f is estimated with a nonparametric approach. Nonparametric approach that used is a wavelet shrinkage or a wavelet threshold method. In the function estimation with a wavelet threshold method,  the value of  threshold has  the most important role to determine  level of smoothing estimator. The small threshold give function estimation very no smoothly, while  the big value of threshold give function estimation very smoothly. Therefore the optimal value of threshold should be selected to determine the optimal function estimation. One of the methods to determine the optimal value of threshold by minimize a cross validation function. The cross validation method that be used is two-fold cross validatiaon. In this cross validation, it compute the predicted value by using a half of data set. The original data set is split  into two subsets of equal size : one containing only the even indexed data, and the other, the odd indexed data. The odd data will be used to predict the even data, and vice versa. Based on  the result of data analysis, the optimal threshold with cross validation method is not uniq, but they give the  uniq of wavelet thersholding regression estimation.   Keywords : Nonparametric Regression, Wavelet Threshold Estimator, Cross Validation.
first_indexed 2024-12-11T03:40:55Z
format Article
id doaj.art-bd892185a4d04a019307beca42dc60be
institution Directory Open Access Journal
issn 1979-3693
2477-0647
language English
last_indexed 2024-12-11T03:40:55Z
publishDate 2009-12-01
publisher Universitas Diponegoro
record_format Article
series Media Statistika
spelling doaj.art-bd892185a4d04a019307beca42dc60be2022-12-22T01:22:09ZengUniversitas DiponegoroMedia Statistika1979-36932477-06472009-12-0122566910.14710/medstat.2.2.56-692157PEMILIHAN THRESHOLD OPTIMAL PADA ESTIMATOR REGRESI WAVELET THRESHOLDING DENGAN METODE CROSS VALIDASISuparti SupartiTarno TarnoPaula Meilina Dwi HapsariIf x is a predictor variable and y is a response  variable of  the regression model y = f (x)+ Î with  f is a regression function which not yet been known and Î is independent random variable with mean 0 and variance , hence function f can be estimated by parametric and nonparametric approach. In this paper function f is estimated with a nonparametric approach. Nonparametric approach that used is a wavelet shrinkage or a wavelet threshold method. In the function estimation with a wavelet threshold method,  the value of  threshold has  the most important role to determine  level of smoothing estimator. The small threshold give function estimation very no smoothly, while  the big value of threshold give function estimation very smoothly. Therefore the optimal value of threshold should be selected to determine the optimal function estimation. One of the methods to determine the optimal value of threshold by minimize a cross validation function. The cross validation method that be used is two-fold cross validatiaon. In this cross validation, it compute the predicted value by using a half of data set. The original data set is split  into two subsets of equal size : one containing only the even indexed data, and the other, the odd indexed data. The odd data will be used to predict the even data, and vice versa. Based on  the result of data analysis, the optimal threshold with cross validation method is not uniq, but they give the  uniq of wavelet thersholding regression estimation.   Keywords : Nonparametric Regression, Wavelet Threshold Estimator, Cross Validation.https://ejournal.undip.ac.id/index.php/media_statistika/article/view/2495
spellingShingle Suparti Suparti
Tarno Tarno
Paula Meilina Dwi Hapsari
PEMILIHAN THRESHOLD OPTIMAL PADA ESTIMATOR REGRESI WAVELET THRESHOLDING DENGAN METODE CROSS VALIDASI
Media Statistika
title PEMILIHAN THRESHOLD OPTIMAL PADA ESTIMATOR REGRESI WAVELET THRESHOLDING DENGAN METODE CROSS VALIDASI
title_full PEMILIHAN THRESHOLD OPTIMAL PADA ESTIMATOR REGRESI WAVELET THRESHOLDING DENGAN METODE CROSS VALIDASI
title_fullStr PEMILIHAN THRESHOLD OPTIMAL PADA ESTIMATOR REGRESI WAVELET THRESHOLDING DENGAN METODE CROSS VALIDASI
title_full_unstemmed PEMILIHAN THRESHOLD OPTIMAL PADA ESTIMATOR REGRESI WAVELET THRESHOLDING DENGAN METODE CROSS VALIDASI
title_short PEMILIHAN THRESHOLD OPTIMAL PADA ESTIMATOR REGRESI WAVELET THRESHOLDING DENGAN METODE CROSS VALIDASI
title_sort pemilihan threshold optimal pada estimator regresi wavelet thresholding dengan metode cross validasi
url https://ejournal.undip.ac.id/index.php/media_statistika/article/view/2495
work_keys_str_mv AT supartisuparti pemilihanthresholdoptimalpadaestimatorregresiwaveletthresholdingdenganmetodecrossvalidasi
AT tarnotarno pemilihanthresholdoptimalpadaestimatorregresiwaveletthresholdingdenganmetodecrossvalidasi
AT paulameilinadwihapsari pemilihanthresholdoptimalpadaestimatorregresiwaveletthresholdingdenganmetodecrossvalidasi