Effect of H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress
Plant growth-promoting bacteria improve plant growth under abiotic stress conditions. However, their effects on microbial succession in the rhizosphere are poorly understood. In this study, the inoculants of Bacillus mesonae strain H20-5 were administered to tomato plants grown in soils with differe...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hanrimwon Publishing Company
2021-12-01
|
Series: | The Plant Pathology Journal |
Subjects: | |
Online Access: | http://www.ppjonline.org/upload/pdf/PPJ-FT-10-2021-0156.pdf |
_version_ | 1798037000097366016 |
---|---|
author | Shin Ae Lee Hyeon Su Kim Mee Kyung Sang Jaekyeong Song Hang-Yeon Weon |
author_facet | Shin Ae Lee Hyeon Su Kim Mee Kyung Sang Jaekyeong Song Hang-Yeon Weon |
author_sort | Shin Ae Lee |
collection | DOAJ |
description | Plant growth-promoting bacteria improve plant growth under abiotic stress conditions. However, their effects on microbial succession in the rhizosphere are poorly understood. In this study, the inoculants of Bacillus mesonae strain H20-5 were administered to tomato plants grown in soils with different salinity levels (EC of 2, 4, and 6 dS/m). The bacterial communities in the bulk and rhizosphere soils were examined 14 days after H20-5 treatment using Illumina MiSeq sequencing of the bacterial 16S rRNA gene. Although the abundance of H20-5 rapidly decreased in the bulk and rhizosphere soils, a shift in the bacterial community was observed following H20-5 treatment. The variation in bacterial communities due to H20-5 treatment was higher in the rhizosphere than in the bulk soils. Additionally, the bacterial species richness and diversity were greater in the H20-5 treated rhizosphere than in the control. The composition and structure of the bacterial communities varied with soil salinity levels, and those in the H20-5 treated rhizosphere soil were clustered. The members of Actinobacteria genera, including Kineosporia, Virgisporangium, Actinoplanes, Gaiella, Blastococcus, and Solirubrobacter, were enriched in the H20-5 treated rhizosphere soils. The microbial co-occurrence network of the bacterial community in the H20-5 treated rhizosphere soils had more modules and keystone taxa compared to the control. These findings revealed that the strain H20-5 induced systemic tolerance in tomato plants and influenced the diversity, composition, structure, and network of bacterial communities. The bacterial community in the H20-5 treated rhizosphere soils also appeared to be relatively stable to soil salinity changes. |
first_indexed | 2024-04-11T21:20:41Z |
format | Article |
id | doaj.art-bd97b10de235418f851d615f93471738 |
institution | Directory Open Access Journal |
issn | 1598-2254 2093-9280 |
language | English |
last_indexed | 2024-04-11T21:20:41Z |
publishDate | 2021-12-01 |
publisher | Hanrimwon Publishing Company |
record_format | Article |
series | The Plant Pathology Journal |
spelling | doaj.art-bd97b10de235418f851d615f934717382022-12-22T04:02:39ZengHanrimwon Publishing CompanyThe Plant Pathology Journal1598-22542093-92802021-12-0137666267210.5423/PPJ.FT.10.2021.01562293Effect of H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity StressShin Ae Lee0Hyeon Su Kim1Mee Kyung Sang2Jaekyeong Song3Hang-Yeon Weon4 Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, KoreaPlant growth-promoting bacteria improve plant growth under abiotic stress conditions. However, their effects on microbial succession in the rhizosphere are poorly understood. In this study, the inoculants of Bacillus mesonae strain H20-5 were administered to tomato plants grown in soils with different salinity levels (EC of 2, 4, and 6 dS/m). The bacterial communities in the bulk and rhizosphere soils were examined 14 days after H20-5 treatment using Illumina MiSeq sequencing of the bacterial 16S rRNA gene. Although the abundance of H20-5 rapidly decreased in the bulk and rhizosphere soils, a shift in the bacterial community was observed following H20-5 treatment. The variation in bacterial communities due to H20-5 treatment was higher in the rhizosphere than in the bulk soils. Additionally, the bacterial species richness and diversity were greater in the H20-5 treated rhizosphere than in the control. The composition and structure of the bacterial communities varied with soil salinity levels, and those in the H20-5 treated rhizosphere soil were clustered. The members of Actinobacteria genera, including Kineosporia, Virgisporangium, Actinoplanes, Gaiella, Blastococcus, and Solirubrobacter, were enriched in the H20-5 treated rhizosphere soils. The microbial co-occurrence network of the bacterial community in the H20-5 treated rhizosphere soils had more modules and keystone taxa compared to the control. These findings revealed that the strain H20-5 induced systemic tolerance in tomato plants and influenced the diversity, composition, structure, and network of bacterial communities. The bacterial community in the H20-5 treated rhizosphere soils also appeared to be relatively stable to soil salinity changes.http://www.ppjonline.org/upload/pdf/PPJ-FT-10-2021-0156.pdfbacterial communityrhizospheresalinitytomato |
spellingShingle | Shin Ae Lee Hyeon Su Kim Mee Kyung Sang Jaekyeong Song Hang-Yeon Weon Effect of H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress The Plant Pathology Journal bacterial community rhizosphere salinity tomato |
title | Effect of H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress |
title_full | Effect of H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress |
title_fullStr | Effect of H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress |
title_full_unstemmed | Effect of H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress |
title_short | Effect of H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress |
title_sort | effect of h20 5 treatment on rhizospheric bacterial community of tomato plants under salinity stress |
topic | bacterial community rhizosphere salinity tomato |
url | http://www.ppjonline.org/upload/pdf/PPJ-FT-10-2021-0156.pdf |
work_keys_str_mv | AT shinaelee effectofh205treatmentonrhizosphericbacterialcommunityoftomatoplantsundersalinitystress AT hyeonsukim effectofh205treatmentonrhizosphericbacterialcommunityoftomatoplantsundersalinitystress AT meekyungsang effectofh205treatmentonrhizosphericbacterialcommunityoftomatoplantsundersalinitystress AT jaekyeongsong effectofh205treatmentonrhizosphericbacterialcommunityoftomatoplantsundersalinitystress AT hangyeonweon effectofh205treatmentonrhizosphericbacterialcommunityoftomatoplantsundersalinitystress |