Best Proximity Results with Applications to Nonlinear Dynamical Systems

Best proximity point theorem furnishes sufficient conditions for the existence and computation of an approximate solution <inline-formula> <math display="inline"> <semantics> <mi>&#969;</mi> </semantics> </math> </inline-formula> that is...

Full description

Bibliographic Details
Main Authors: Hamed H Al-Sulami, Nawab Hussain, Jamshaid Ahmad
Format: Article
Language:English
Published: MDPI AG 2019-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/10/900
_version_ 1818199158912188416
author Hamed H Al-Sulami
Nawab Hussain
Jamshaid Ahmad
author_facet Hamed H Al-Sulami
Nawab Hussain
Jamshaid Ahmad
author_sort Hamed H Al-Sulami
collection DOAJ
description Best proximity point theorem furnishes sufficient conditions for the existence and computation of an approximate solution <inline-formula> <math display="inline"> <semantics> <mi>&#969;</mi> </semantics> </math> </inline-formula> that is optimal in the sense that the error <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#963;</mi> <mo>(</mo> <mi>&#969;</mi> <mo>,</mo> <mi mathvariant="script">J</mi> <mi>&#969;</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> assumes the global minimum value <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#963;</mi> <mo>(</mo> <mi>&#952;</mi> <mo>,</mo> <mi>&#977;</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. The aim of this paper is to define the notion of Suzuki <inline-formula> <math display="inline"> <semantics> <mi>&#945;</mi> </semantics> </math> </inline-formula>-<inline-formula> <math display="inline"> <semantics> <mo>&#920;</mo> </semantics> </math> </inline-formula>-proximal multivalued contraction and prove the existence of best proximity points <inline-formula> <math display="inline"> <semantics> <mi>&#969;</mi> </semantics> </math> </inline-formula> satisfying <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#963;</mi> <mo>(</mo> <mi>&#969;</mi> <mo>,</mo> <mi mathvariant="script">J</mi> <mi>&#969;</mi> <mo>)</mo> <mo>=</mo> <mi>&#963;</mi> <mo>(</mo> <mi>&#952;</mi> <mo>,</mo> <mi>&#977;</mi> <mo>)</mo> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">J</mi> </semantics> </math> </inline-formula> is assumed to be continuous or the space <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">M</mi> </semantics> </math> </inline-formula> is regular. We derive some best proximity results on a metric space with graphs and ordered metric spaces as consequences. We also provide a non trivial example to support our main results. As applications of our main results, we discuss some variational inequality problems and dynamical programming problems.
first_indexed 2024-12-12T02:17:19Z
format Article
id doaj.art-bd9fdf137b9c49ef84f7afb10e3e4f72
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-12-12T02:17:19Z
publishDate 2019-09-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-bd9fdf137b9c49ef84f7afb10e3e4f722022-12-22T00:41:46ZengMDPI AGMathematics2227-73902019-09-0171090010.3390/math7100900math7100900Best Proximity Results with Applications to Nonlinear Dynamical SystemsHamed H Al-Sulami0Nawab Hussain1Jamshaid Ahmad2Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi ArabiaDepartment of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi ArabiaDepartment of Mathematics, University of Jeddah, P.O.Box 80327, Jeddah 21589, Saudi ArabiaBest proximity point theorem furnishes sufficient conditions for the existence and computation of an approximate solution <inline-formula> <math display="inline"> <semantics> <mi>&#969;</mi> </semantics> </math> </inline-formula> that is optimal in the sense that the error <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#963;</mi> <mo>(</mo> <mi>&#969;</mi> <mo>,</mo> <mi mathvariant="script">J</mi> <mi>&#969;</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> assumes the global minimum value <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#963;</mi> <mo>(</mo> <mi>&#952;</mi> <mo>,</mo> <mi>&#977;</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. The aim of this paper is to define the notion of Suzuki <inline-formula> <math display="inline"> <semantics> <mi>&#945;</mi> </semantics> </math> </inline-formula>-<inline-formula> <math display="inline"> <semantics> <mo>&#920;</mo> </semantics> </math> </inline-formula>-proximal multivalued contraction and prove the existence of best proximity points <inline-formula> <math display="inline"> <semantics> <mi>&#969;</mi> </semantics> </math> </inline-formula> satisfying <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#963;</mi> <mo>(</mo> <mi>&#969;</mi> <mo>,</mo> <mi mathvariant="script">J</mi> <mi>&#969;</mi> <mo>)</mo> <mo>=</mo> <mi>&#963;</mi> <mo>(</mo> <mi>&#952;</mi> <mo>,</mo> <mi>&#977;</mi> <mo>)</mo> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">J</mi> </semantics> </math> </inline-formula> is assumed to be continuous or the space <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">M</mi> </semantics> </math> </inline-formula> is regular. We derive some best proximity results on a metric space with graphs and ordered metric spaces as consequences. We also provide a non trivial example to support our main results. As applications of our main results, we discuss some variational inequality problems and dynamical programming problems.https://www.mdpi.com/2227-7390/7/10/900nonlinear dynamical systemsbest proximity point<i>α</i>-proximal contractionmulti-valued mappingsgraphs
spellingShingle Hamed H Al-Sulami
Nawab Hussain
Jamshaid Ahmad
Best Proximity Results with Applications to Nonlinear Dynamical Systems
Mathematics
nonlinear dynamical systems
best proximity point
<i>α</i>-proximal contraction
multi-valued mappings
graphs
title Best Proximity Results with Applications to Nonlinear Dynamical Systems
title_full Best Proximity Results with Applications to Nonlinear Dynamical Systems
title_fullStr Best Proximity Results with Applications to Nonlinear Dynamical Systems
title_full_unstemmed Best Proximity Results with Applications to Nonlinear Dynamical Systems
title_short Best Proximity Results with Applications to Nonlinear Dynamical Systems
title_sort best proximity results with applications to nonlinear dynamical systems
topic nonlinear dynamical systems
best proximity point
<i>α</i>-proximal contraction
multi-valued mappings
graphs
url https://www.mdpi.com/2227-7390/7/10/900
work_keys_str_mv AT hamedhalsulami bestproximityresultswithapplicationstononlineardynamicalsystems
AT nawabhussain bestproximityresultswithapplicationstononlineardynamicalsystems
AT jamshaidahmad bestproximityresultswithapplicationstononlineardynamicalsystems