Interpreting the decisions of CNNs via influence functions
An understanding of deep neural network decisions is based on the interpretability of model, which provides explanations that are understandable to human beings and helps avoid biases in model predictions. This study investigates and interprets the model output based on images from the training data...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2023-07-01
|
Series: | Frontiers in Computational Neuroscience |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fncom.2023.1172883/full |