Thermoeconomic Evaluation of Integrated Solar Combined Cycle Systems (ISCCS)

Three alternatives for integrating a solar field with the bottoming cycle of a combined cycle plant are modeled: parabolic troughs with oil at intermediate and low cycle pressures and Fresnel linear collectors at low cycle pressure. It is assumed that the plant will always operate at nominal conditi...

Full description

Bibliographic Details
Main Authors: Javier Rodríguez Martín, Eva Bernardos Rodríguez, Ignacio López Paniagua, Celina González Fernández
Format: Article
Language:English
Published: MDPI AG 2014-07-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/16/8/4246
Description
Summary:Three alternatives for integrating a solar field with the bottoming cycle of a combined cycle plant are modeled: parabolic troughs with oil at intermediate and low cycle pressures and Fresnel linear collectors at low cycle pressure. It is assumed that the plant will always operate at nominal conditions, using post-combustion during the hours of no solar resource. A thermoeconomic study of the operation of the plant throughout a year has been carried out. The energy and exergy efficiencies of the plant working in fuel only and hybrid modes are compared. The energy efficiencies obtained are very similar; slightly better for the fuel only mode. The exergy efficiencies are slightly better for hybrid operation than for fuel-only mode, due to the high exergy destruction associated with post-combustion. The values for solar electric efficiency are in line with those of similar studies. The economic study shows that the Fresnel hybridization alternative offers similar performance to the others at a significantly lower cost.
ISSN:1099-4300