Weaker Forms of Soft Regular and Soft <i>T</i><sub>2</sub> Soft Topological Spaces

Soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-local indiscreetness as a weaker form of both soft local countability and soft local in...

Full description

Bibliographic Details
Main Author: Samer Al Ghour
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/17/2153
_version_ 1797521125471682560
author Samer Al Ghour
author_facet Samer Al Ghour
author_sort Samer Al Ghour
collection DOAJ
description Soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-local indiscreetness as a weaker form of both soft local countability and soft local indiscreetness is introduced. Then soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-regularity as a weaker form of both soft regularity and soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-local indiscreetness is defined and investigated. Additionally, soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mn>2</mn></msub></semantics></math></inline-formula> as a new soft topological property that lies strictly between soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mn>2</mn></msub></semantics></math></inline-formula> and soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mn>1</mn></msub></semantics></math></inline-formula> is defined and investigated. It is proved that soft anti-local countability is a sufficient condition for equivalence between soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-locally indiscreetness (resp. soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-regularity) and soft locally indiscreetness (resp. soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-regularity). Additionally, it is proved that the induced topological spaces of a soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-locally indiscrete (resp. soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-regular, soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mn>2</mn></msub></semantics></math></inline-formula>) soft topological space are (resp. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-regular, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mn>2</mn></msub></semantics></math></inline-formula>) topological spaces. Additionally, it is proved that the generated soft topological space of a family of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-locally indiscrete (resp. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-regular, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mn>2</mn></msub></semantics></math></inline-formula>) topological spaces is soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-locally indiscrete and vice versa. In addition to these, soft product theorems regarding soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-regular and soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mn>2</mn></msub></semantics></math></inline-formula> soft topological spaces are obtained. Moreover, it is proved that soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-regular and soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mn>2</mn></msub></semantics></math></inline-formula> are hereditarily under soft subspaces.
first_indexed 2024-03-10T08:07:11Z
format Article
id doaj.art-bdc6a3cdb2794f469a5b577a79994ece
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T08:07:11Z
publishDate 2021-09-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-bdc6a3cdb2794f469a5b577a79994ece2023-11-22T10:58:41ZengMDPI AGMathematics2227-73902021-09-01917215310.3390/math9172153Weaker Forms of Soft Regular and Soft <i>T</i><sub>2</sub> Soft Topological SpacesSamer Al Ghour0Department of Mathematics, Jordan University of Science and Technology, Irbid 22110, JordanSoft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-local indiscreetness as a weaker form of both soft local countability and soft local indiscreetness is introduced. Then soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-regularity as a weaker form of both soft regularity and soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-local indiscreetness is defined and investigated. Additionally, soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mn>2</mn></msub></semantics></math></inline-formula> as a new soft topological property that lies strictly between soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mn>2</mn></msub></semantics></math></inline-formula> and soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mn>1</mn></msub></semantics></math></inline-formula> is defined and investigated. It is proved that soft anti-local countability is a sufficient condition for equivalence between soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-locally indiscreetness (resp. soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-regularity) and soft locally indiscreetness (resp. soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-regularity). Additionally, it is proved that the induced topological spaces of a soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-locally indiscrete (resp. soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-regular, soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mn>2</mn></msub></semantics></math></inline-formula>) soft topological space are (resp. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-regular, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mn>2</mn></msub></semantics></math></inline-formula>) topological spaces. Additionally, it is proved that the generated soft topological space of a family of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-locally indiscrete (resp. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-regular, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mn>2</mn></msub></semantics></math></inline-formula>) topological spaces is soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-locally indiscrete and vice versa. In addition to these, soft product theorems regarding soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-regular and soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mn>2</mn></msub></semantics></math></inline-formula> soft topological spaces are obtained. Moreover, it is proved that soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-regular and soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mn>2</mn></msub></semantics></math></inline-formula> are hereditarily under soft subspaces.https://www.mdpi.com/2227-7390/9/17/2153soft local indiscreetnesssoft regularitysoft <i>T2</i> soft topological spacessoft productsoft subspacesoft generated soft topological space
spellingShingle Samer Al Ghour
Weaker Forms of Soft Regular and Soft <i>T</i><sub>2</sub> Soft Topological Spaces
Mathematics
soft local indiscreetness
soft regularity
soft <i>T2</i> soft topological spaces
soft product
soft subspace
soft generated soft topological space
title Weaker Forms of Soft Regular and Soft <i>T</i><sub>2</sub> Soft Topological Spaces
title_full Weaker Forms of Soft Regular and Soft <i>T</i><sub>2</sub> Soft Topological Spaces
title_fullStr Weaker Forms of Soft Regular and Soft <i>T</i><sub>2</sub> Soft Topological Spaces
title_full_unstemmed Weaker Forms of Soft Regular and Soft <i>T</i><sub>2</sub> Soft Topological Spaces
title_short Weaker Forms of Soft Regular and Soft <i>T</i><sub>2</sub> Soft Topological Spaces
title_sort weaker forms of soft regular and soft i t i sub 2 sub soft topological spaces
topic soft local indiscreetness
soft regularity
soft <i>T2</i> soft topological spaces
soft product
soft subspace
soft generated soft topological space
url https://www.mdpi.com/2227-7390/9/17/2153
work_keys_str_mv AT sameralghour weakerformsofsoftregularandsoftitisub2subsofttopologicalspaces