Melting Behavior and Thermolysis of NaBH4−Mg(BH4)2 and NaBH4−Ca(BH4)2 Composites

The physical properties and the hydrogen release of NaBH4–Mg(BH4)2 and NaBH4−Ca(BH4)2 composites are investigated using in situ synchrotron radiation powder X-ray diffraction, thermal analysis and temperature programmed photographic analysis. The composite, xNaBH4–(1 − x)Mg(BH4)2, x = 0.4 to 0.5, s...

Full description

Bibliographic Details
Main Authors: Morten B. Ley, Elsa Roedern, Peter M. M. Thygesen, Torben R. Jensen
Format: Article
Language:English
Published: MDPI AG 2015-04-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/8/4/2701
Description
Summary:The physical properties and the hydrogen release of NaBH4–Mg(BH4)2 and NaBH4−Ca(BH4)2 composites are investigated using in situ synchrotron radiation powder X-ray diffraction, thermal analysis and temperature programmed photographic analysis. The composite, xNaBH4–(1 − x)Mg(BH4)2, x = 0.4 to 0.5, shows melting/frothing between 205 and 220 °C. However, the sample does not become a transparent molten phase. This behavior is similar to other alkali-alkaline earth metal borohydride composites. In the xNaBH4–(1 − x)Ca(BH4)2 system, eutectic melting is not observed. Interestingly, eutectic melting in metal borohydrides systems leads to partial thermolysis and hydrogen release at lower temperatures and the control of sample melting may open new routes for obtaining high-capacity hydrogen storage materials.
ISSN:1996-1073