Effects of Protein Supplementation Combined with Resistance Exercise Training on Walking Speed Recovery in Older Adults with Knee Osteoarthritis and Sarcopenia

Knee osteoarthritis (KOA) is closely associated with sarcopenia, sharing the common characteristics of muscle weakness and low physical performance. Resistance exercise training (RET), protein supplementation (PS), and PS+RET have promise as treatments for both sarcopenia and KOA. However, whether P...

Full description

Bibliographic Details
Main Authors: Chun-De Liao, Shih-Wei Huang, Hung-Chou Chen, Yu-Yun Huang, Tsan-Hon Liou, Che-Li Lin
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Nutrients
Subjects:
Online Access:https://www.mdpi.com/2072-6643/15/7/1552
Description
Summary:Knee osteoarthritis (KOA) is closely associated with sarcopenia, sharing the common characteristics of muscle weakness and low physical performance. Resistance exercise training (RET), protein supplementation (PS), and PS+RET have promise as treatments for both sarcopenia and KOA. However, whether PS+RET exerts any effect on time to recovery to normal walking speed (WS) in older adults with sarcopenia and KOA remains unclear. This study investigated the treatment efficiency of PS+RET on WS recovery among individuals with KOA and sarcopenia. A total of 108 older adults aged ≥ 60 years who had a diagnosis of radiographic KOA and sarcopenia were enrolled in this prospective cohort study. Sarcopenia was defined on the basis of the cutoff values of the appendicular skeletal muscle mass index for Asian people and a slow WS less than 1.0 m/s. The patients were equally distributed to three groups: PS+RET, RET alone, and usual care. The weekly assessment was performed during a 12-week intervention and a subsequent 36-week follow-up period. A cutoff of 1.0 m/s was used to identify successful recovery to normal WS. Kaplan–Meier analysis was performed to measure the survival time to normal WS among the study groups. Multivariate Cox proportional-hazards regression (CPHR) models were established to calculate the hazard ratios (HRs) of successful WS recovery and determine its potential moderators. After the 3-month intervention, PS+RET as well as RET obtained greater changes in WS by an adjusted mean difference of 0.18 m/s (<i>p</i> < 0.0001) and 0.08 (<i>p</i> < 0.05) m/s, respectively, compared to usual care. Kaplan–Meier analysis results showed both RET and PS+RET interventions yielded high probabilities of achieving normal WS over the 12-month follow-up period. Multivariate CPHR results revealed that PS+RET (adjusted HR = 5.48; <i>p</i> < 0.001), as well as RET (adjusted HR = 2.21; <i>p</i> < 0.05), independently exerted significant effects on WS recovery. PS+RET may accelerate normal WS recovery by approximately 3 months compared with RET. Sex and initial WS may influence the treatment efficiency. For patients with KOA who suffer sarcopenia, 12-week RET alone exerts significant effects on WS recovery, whereas additional PS further augments the treatment effects of RET by speeding up the recovery time of WS toward a level ≥ 1.0 m/s, which facilitates the patients to diminish the disease severity or even free from sarcopenia.
ISSN:2072-6643