One-dimensional elliptic equation with concave and convex nonlinearities

We establish the exact number of positive solutions for the boundary-value problem $$displaylines{ -(|u'|^{m-2} u')'=lambda u^q + u^pquad hbox{in }(0,1)cr u(0)= u(1)=0,, }$$ where $0leq q < m- 1 < p$ and $lambda$ is positive.

Bibliographic Details
Main Authors: Justino Sanchez, Pedro Ubilla
Format: Article
Language:English
Published: Texas State University 2000-06-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2000/50/abstr.html
Description
Summary:We establish the exact number of positive solutions for the boundary-value problem $$displaylines{ -(|u'|^{m-2} u')'=lambda u^q + u^pquad hbox{in }(0,1)cr u(0)= u(1)=0,, }$$ where $0leq q < m- 1 < p$ and $lambda$ is positive.
ISSN:1072-6691