Super-Relaxed (<inline-formula> <graphic file="1687-1812-2009-957407-i1.gif"/></inline-formula>)-Proximal Point Algorithms, Relaxed (<inline-formula> <graphic file="1687-1812-2009-957407-i2.gif"/></inline-formula>)-Proximal Point Algorithms, Linear Convergence Analysis, and Nonlinear Variational Inclusions

<p/> <p>We glance at recent advances to the general theory of maximal (set-valued) monotone mappings and their role demonstrated to examine the convex programming and closely related field of nonlinear variational inequalities. We focus mostly on applications of the super-relaxed (<in...

Full description

Bibliographic Details
Main Authors: Agarwal RaviP, Verma RamU
Format: Article
Language:English
Published: SpringerOpen 2009-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2009/957407
_version_ 1818838806694985728
author Agarwal RaviP
Verma RamU
author_facet Agarwal RaviP
Verma RamU
author_sort Agarwal RaviP
collection DOAJ
description <p/> <p>We glance at recent advances to the general theory of maximal (set-valued) monotone mappings and their role demonstrated to examine the convex programming and closely related field of nonlinear variational inequalities. We focus mostly on applications of the super-relaxed (<inline-formula> <graphic file="1687-1812-2009-957407-i3.gif"/></inline-formula>)-proximal point algorithm to the context of solving a class of nonlinear variational inclusion problems, based on the notion of maximal (<inline-formula> <graphic file="1687-1812-2009-957407-i4.gif"/></inline-formula>)-monotonicity. Investigations highlighted in this communication are greatly influenced by the celebrated work of Rockafellar (1976), while others have played a significant part as well in generalizing the proximal point algorithm considered by Rockafellar (1976) to the case of the relaxed proximal point algorithm by Eckstein and Bertsekas (1992). Even for the linear convergence analysis for the overrelaxed (or super-relaxed) (<inline-formula> <graphic file="1687-1812-2009-957407-i5.gif"/></inline-formula>)-proximal point algorithm, the fundamental model for Rockafellar's case does the job. Furthermore, we attempt to explore possibilities of generalizing the Yosida regularization/approximation in light of maximal (<inline-formula> <graphic file="1687-1812-2009-957407-i6.gif"/></inline-formula>)-monotonicity, and then applying to first-order evolution equations/inclusions.</p>
first_indexed 2024-12-19T03:44:15Z
format Article
id doaj.art-bdfe618c1d56424b90e5a8498be23060
institution Directory Open Access Journal
issn 1687-1820
1687-1812
language English
last_indexed 2024-12-19T03:44:15Z
publishDate 2009-01-01
publisher SpringerOpen
record_format Article
series Fixed Point Theory and Applications
spelling doaj.art-bdfe618c1d56424b90e5a8498be230602022-12-21T20:37:10ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122009-01-0120091957407Super-Relaxed (<inline-formula> <graphic file="1687-1812-2009-957407-i1.gif"/></inline-formula>)-Proximal Point Algorithms, Relaxed (<inline-formula> <graphic file="1687-1812-2009-957407-i2.gif"/></inline-formula>)-Proximal Point Algorithms, Linear Convergence Analysis, and Nonlinear Variational InclusionsAgarwal RaviPVerma RamU<p/> <p>We glance at recent advances to the general theory of maximal (set-valued) monotone mappings and their role demonstrated to examine the convex programming and closely related field of nonlinear variational inequalities. We focus mostly on applications of the super-relaxed (<inline-formula> <graphic file="1687-1812-2009-957407-i3.gif"/></inline-formula>)-proximal point algorithm to the context of solving a class of nonlinear variational inclusion problems, based on the notion of maximal (<inline-formula> <graphic file="1687-1812-2009-957407-i4.gif"/></inline-formula>)-monotonicity. Investigations highlighted in this communication are greatly influenced by the celebrated work of Rockafellar (1976), while others have played a significant part as well in generalizing the proximal point algorithm considered by Rockafellar (1976) to the case of the relaxed proximal point algorithm by Eckstein and Bertsekas (1992). Even for the linear convergence analysis for the overrelaxed (or super-relaxed) (<inline-formula> <graphic file="1687-1812-2009-957407-i5.gif"/></inline-formula>)-proximal point algorithm, the fundamental model for Rockafellar's case does the job. Furthermore, we attempt to explore possibilities of generalizing the Yosida regularization/approximation in light of maximal (<inline-formula> <graphic file="1687-1812-2009-957407-i6.gif"/></inline-formula>)-monotonicity, and then applying to first-order evolution equations/inclusions.</p>http://www.fixedpointtheoryandapplications.com/content/2009/957407
spellingShingle Agarwal RaviP
Verma RamU
Super-Relaxed (<inline-formula> <graphic file="1687-1812-2009-957407-i1.gif"/></inline-formula>)-Proximal Point Algorithms, Relaxed (<inline-formula> <graphic file="1687-1812-2009-957407-i2.gif"/></inline-formula>)-Proximal Point Algorithms, Linear Convergence Analysis, and Nonlinear Variational Inclusions
Fixed Point Theory and Applications
title Super-Relaxed (<inline-formula> <graphic file="1687-1812-2009-957407-i1.gif"/></inline-formula>)-Proximal Point Algorithms, Relaxed (<inline-formula> <graphic file="1687-1812-2009-957407-i2.gif"/></inline-formula>)-Proximal Point Algorithms, Linear Convergence Analysis, and Nonlinear Variational Inclusions
title_full Super-Relaxed (<inline-formula> <graphic file="1687-1812-2009-957407-i1.gif"/></inline-formula>)-Proximal Point Algorithms, Relaxed (<inline-formula> <graphic file="1687-1812-2009-957407-i2.gif"/></inline-formula>)-Proximal Point Algorithms, Linear Convergence Analysis, and Nonlinear Variational Inclusions
title_fullStr Super-Relaxed (<inline-formula> <graphic file="1687-1812-2009-957407-i1.gif"/></inline-formula>)-Proximal Point Algorithms, Relaxed (<inline-formula> <graphic file="1687-1812-2009-957407-i2.gif"/></inline-formula>)-Proximal Point Algorithms, Linear Convergence Analysis, and Nonlinear Variational Inclusions
title_full_unstemmed Super-Relaxed (<inline-formula> <graphic file="1687-1812-2009-957407-i1.gif"/></inline-formula>)-Proximal Point Algorithms, Relaxed (<inline-formula> <graphic file="1687-1812-2009-957407-i2.gif"/></inline-formula>)-Proximal Point Algorithms, Linear Convergence Analysis, and Nonlinear Variational Inclusions
title_short Super-Relaxed (<inline-formula> <graphic file="1687-1812-2009-957407-i1.gif"/></inline-formula>)-Proximal Point Algorithms, Relaxed (<inline-formula> <graphic file="1687-1812-2009-957407-i2.gif"/></inline-formula>)-Proximal Point Algorithms, Linear Convergence Analysis, and Nonlinear Variational Inclusions
title_sort super relaxed inline formula graphic file 1687 1812 2009 957407 i1 gif inline formula proximal point algorithms relaxed inline formula graphic file 1687 1812 2009 957407 i2 gif inline formula proximal point algorithms linear convergence analysis and nonlinear variational inclusions
url http://www.fixedpointtheoryandapplications.com/content/2009/957407
work_keys_str_mv AT agarwalravip superrelaxedinlineformulagraphicfile168718122009957407i1gifinlineformulaproximalpointalgorithmsrelaxedinlineformulagraphicfile168718122009957407i2gifinlineformulaproximalpointalgorithmslinearconvergenceanalysisandnonlinearvariationalinclusions
AT vermaramu superrelaxedinlineformulagraphicfile168718122009957407i1gifinlineformulaproximalpointalgorithmsrelaxedinlineformulagraphicfile168718122009957407i2gifinlineformulaproximalpointalgorithmslinearconvergenceanalysisandnonlinearvariationalinclusions