On the Symmetric Properties of Higher-Order Twisted <inline-formula><graphic file="1687-1847-2010-765259-i1.gif"/></inline-formula>-Euler Numbers and Polynomials
<p/> <p>In 2009, Kim et al. gave some identities of symmetry for the twisted Euler polynomials of higher-order, recently. In this paper, we extend our result to the higher-order twisted <inline-formula><graphic file="1687-1847-2010-765259-i2.gif"/></inline-formul...
Main Authors: | Rim Seog-Hoon, Moon Eun-Jung, Jin Jeong-Hee, Lee Sun-Jung |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Advances in Difference Equations |
Online Access: | http://www.advancesindifferenceequations.com/content/2010/765259 |
Similar Items
-
New Approach to <inline-formula><graphic file="1687-1847-2010-431436-i1.gif"/></inline-formula>-Euler Numbers and Polynomials
by: Jang Lee-Chae, et al.
Published: (2010-01-01) -
A Note on Symmetric Properties of the Twisted <inline-formula><graphic file="1687-1847-2010-801580-i1.gif"/></inline-formula>-Bernoulli Polynomials and the Twisted Generalized <inline-formula><graphic file="1687-1847-2010-801580-i2.gif"/></inline-formula>-Bernoulli Polynomials
by: Lee B, et al.
Published: (2010-01-01) -
A New Approach to <inline-formula><graphic file="1687-1847-2010-951764-i1.gif"/></inline-formula>-Bernoulli Numbers and <inline-formula><graphic file="1687-1847-2010-951764-i2.gif"/></inline-formula>-Bernoulli Polynomials Related to <inline-formula><graphic file="1687-1847-2010-951764-i3.gif"/></inline-formula>-Bernstein Polynomials
by: Açikgöz Mehmet, et al.
Published: (2010-01-01) -
<inline-formula> <graphic file="1687-1847-2008-815750-i1.gif"/></inline-formula>-Genocchi Numbers and Polynomials Associated with <inline-formula> <graphic file="1687-1847-2008-815750-i2.gif"/></inline-formula>-Genocchi-Type <inline-formula> <graphic file="1687-1847-2008-815750-i3.gif"/></inline-formula>-Functions
by: Cangul IsmailNaci, et al.
Published: (2008-01-01) -
Results and Conjectures about Order <inline-formula> <graphic file="1687-1847-2009-134749-i1.gif"/></inline-formula> Lyness' Difference Equation <inline-formula> <graphic file="1687-1847-2009-134749-i2.gif"/></inline-formula> in <inline-formula> <graphic file="1687-1847-2009-134749-i3.gif"/></inline-formula>, with a Particular Study of the Case <inline-formula> <graphic file="1687-1847-2009-134749-i4.gif"/></inline-formula>
by: Rogalski M, et al.
Published: (2009-01-01)