ProTECT—Prediction of T-Cell Epitopes for Cancer Therapy

Somatic mutations in cancers affecting protein coding genes can give rise to potentially therapeutic neoepitopes. These neoepitopes can guide Adoptive Cell Therapies and Peptide- and RNA-based Neoepitope Vaccines to selectively target tumor cells using autologous patient cytotoxic T-cells. Currently...

Full description

Bibliographic Details
Main Authors: Arjun A. Rao, Ada A. Madejska, Jacob Pfeil, Benedict Paten, Sofie R. Salama, David Haussler
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-11-01
Series:Frontiers in Immunology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fimmu.2020.483296/full
_version_ 1818240297481535488
author Arjun A. Rao
Arjun A. Rao
Arjun A. Rao
Ada A. Madejska
Ada A. Madejska
Jacob Pfeil
Jacob Pfeil
Jacob Pfeil
Benedict Paten
Benedict Paten
Benedict Paten
Sofie R. Salama
Sofie R. Salama
Sofie R. Salama
David Haussler
David Haussler
David Haussler
David Haussler
author_facet Arjun A. Rao
Arjun A. Rao
Arjun A. Rao
Ada A. Madejska
Ada A. Madejska
Jacob Pfeil
Jacob Pfeil
Jacob Pfeil
Benedict Paten
Benedict Paten
Benedict Paten
Sofie R. Salama
Sofie R. Salama
Sofie R. Salama
David Haussler
David Haussler
David Haussler
David Haussler
author_sort Arjun A. Rao
collection DOAJ
description Somatic mutations in cancers affecting protein coding genes can give rise to potentially therapeutic neoepitopes. These neoepitopes can guide Adoptive Cell Therapies and Peptide- and RNA-based Neoepitope Vaccines to selectively target tumor cells using autologous patient cytotoxic T-cells. Currently, researchers have to independently align their data, call somatic mutations and haplotype the patient’s HLA to use existing neoepitope prediction tools. We present ProTECT, a fully automated, reproducible, scalable, and efficient end-to-end analysis pipeline to identify and rank therapeutically relevant tumor neoepitopes in terms of potential immunogenicity starting directly from raw patient sequencing data, or from pre-processed data. The ProTECT pipeline encompasses alignment, HLA haplotyping, mutation calling (single nucleotide variants, short insertions and deletions, and gene fusions), peptide:MHC binding prediction, and ranking of final candidates. We demonstrate the scalability, efficiency, and utility of ProTECT on 326 samples from the TCGA Prostate Adenocarcinoma cohort, identifying recurrent potential neoepitopes from TMPRSS2-ERG fusions, and from SNVs in SPOP. We also compare ProTECT with results from published tools. ProTECT can be run on a standalone computer, a local cluster, or on a compute cloud using a Mesos backend. ProTECT is highly scalable and can process TCGA data in under 30 min per sample (on average) when run in large batches. ProTECT is freely available at https://www.github.com/BD2KGenomics/protect.
first_indexed 2024-12-12T13:11:12Z
format Article
id doaj.art-be19859171104a01a0a1923e6cbf455e
institution Directory Open Access Journal
issn 1664-3224
language English
last_indexed 2024-12-12T13:11:12Z
publishDate 2020-11-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Immunology
spelling doaj.art-be19859171104a01a0a1923e6cbf455e2022-12-22T00:23:32ZengFrontiers Media S.A.Frontiers in Immunology1664-32242020-11-011110.3389/fimmu.2020.483296483296ProTECT—Prediction of T-Cell Epitopes for Cancer TherapyArjun A. Rao0Arjun A. Rao1Arjun A. Rao2Ada A. Madejska3Ada A. Madejska4Jacob Pfeil5Jacob Pfeil6Jacob Pfeil7Benedict Paten8Benedict Paten9Benedict Paten10Sofie R. Salama11Sofie R. Salama12Sofie R. Salama13David Haussler14David Haussler15David Haussler16David Haussler17Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United StatesComputational Genomics Lab, University of California, Santa Cruz, Santa Cruz, CA, United StatesUC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United StatesComputational Genomics Lab, University of California, Santa Cruz, Santa Cruz, CA, United StatesDepartment of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, Santa Cruz, CA, United StatesDepartment of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United StatesComputational Genomics Lab, University of California, Santa Cruz, Santa Cruz, CA, United StatesUC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United StatesDepartment of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United StatesComputational Genomics Lab, University of California, Santa Cruz, Santa Cruz, CA, United StatesUC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United StatesDepartment of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United StatesUC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United StatesHoward Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, United StatesDepartment of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United StatesComputational Genomics Lab, University of California, Santa Cruz, Santa Cruz, CA, United StatesUC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United StatesHoward Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, United StatesSomatic mutations in cancers affecting protein coding genes can give rise to potentially therapeutic neoepitopes. These neoepitopes can guide Adoptive Cell Therapies and Peptide- and RNA-based Neoepitope Vaccines to selectively target tumor cells using autologous patient cytotoxic T-cells. Currently, researchers have to independently align their data, call somatic mutations and haplotype the patient’s HLA to use existing neoepitope prediction tools. We present ProTECT, a fully automated, reproducible, scalable, and efficient end-to-end analysis pipeline to identify and rank therapeutically relevant tumor neoepitopes in terms of potential immunogenicity starting directly from raw patient sequencing data, or from pre-processed data. The ProTECT pipeline encompasses alignment, HLA haplotyping, mutation calling (single nucleotide variants, short insertions and deletions, and gene fusions), peptide:MHC binding prediction, and ranking of final candidates. We demonstrate the scalability, efficiency, and utility of ProTECT on 326 samples from the TCGA Prostate Adenocarcinoma cohort, identifying recurrent potential neoepitopes from TMPRSS2-ERG fusions, and from SNVs in SPOP. We also compare ProTECT with results from published tools. ProTECT can be run on a standalone computer, a local cluster, or on a compute cloud using a Mesos backend. ProTECT is highly scalable and can process TCGA data in under 30 min per sample (on average) when run in large batches. ProTECT is freely available at https://www.github.com/BD2KGenomics/protect.https://www.frontiersin.org/articles/10.3389/fimmu.2020.483296/fullcancerneoepitopeneoantigenautomated predictionvaccinecancer immunotherapy
spellingShingle Arjun A. Rao
Arjun A. Rao
Arjun A. Rao
Ada A. Madejska
Ada A. Madejska
Jacob Pfeil
Jacob Pfeil
Jacob Pfeil
Benedict Paten
Benedict Paten
Benedict Paten
Sofie R. Salama
Sofie R. Salama
Sofie R. Salama
David Haussler
David Haussler
David Haussler
David Haussler
ProTECT—Prediction of T-Cell Epitopes for Cancer Therapy
Frontiers in Immunology
cancer
neoepitope
neoantigen
automated prediction
vaccine
cancer immunotherapy
title ProTECT—Prediction of T-Cell Epitopes for Cancer Therapy
title_full ProTECT—Prediction of T-Cell Epitopes for Cancer Therapy
title_fullStr ProTECT—Prediction of T-Cell Epitopes for Cancer Therapy
title_full_unstemmed ProTECT—Prediction of T-Cell Epitopes for Cancer Therapy
title_short ProTECT—Prediction of T-Cell Epitopes for Cancer Therapy
title_sort protect prediction of t cell epitopes for cancer therapy
topic cancer
neoepitope
neoantigen
automated prediction
vaccine
cancer immunotherapy
url https://www.frontiersin.org/articles/10.3389/fimmu.2020.483296/full
work_keys_str_mv AT arjunarao protectpredictionoftcellepitopesforcancertherapy
AT arjunarao protectpredictionoftcellepitopesforcancertherapy
AT arjunarao protectpredictionoftcellepitopesforcancertherapy
AT adaamadejska protectpredictionoftcellepitopesforcancertherapy
AT adaamadejska protectpredictionoftcellepitopesforcancertherapy
AT jacobpfeil protectpredictionoftcellepitopesforcancertherapy
AT jacobpfeil protectpredictionoftcellepitopesforcancertherapy
AT jacobpfeil protectpredictionoftcellepitopesforcancertherapy
AT benedictpaten protectpredictionoftcellepitopesforcancertherapy
AT benedictpaten protectpredictionoftcellepitopesforcancertherapy
AT benedictpaten protectpredictionoftcellepitopesforcancertherapy
AT sofiersalama protectpredictionoftcellepitopesforcancertherapy
AT sofiersalama protectpredictionoftcellepitopesforcancertherapy
AT sofiersalama protectpredictionoftcellepitopesforcancertherapy
AT davidhaussler protectpredictionoftcellepitopesforcancertherapy
AT davidhaussler protectpredictionoftcellepitopesforcancertherapy
AT davidhaussler protectpredictionoftcellepitopesforcancertherapy
AT davidhaussler protectpredictionoftcellepitopesforcancertherapy