Involvement of the inhibition of mitochondrial apoptotic, p53, NF-κB pathways and the activation of Nrf2/HO-1 pathway in the protective effects of curcumin against copper sulfate-induced nephrotoxicity in mice

Chronic copper exposure could cause potential nephrotoxicity and effective therapy strategies are limited. This study investigated the protective effects of curcumin on copper sulfate (CuSO4)-induced renal damage in a mouse model and the underlying molecular mechanisms. Mice were administrated orall...

Full description

Bibliographic Details
Main Authors: Chongshan Dai, Meng Li, Yue Liu, Diem Hong Tran, Haiyang Jiang, Shusheng Tang, Jianzhong Shen
Format: Article
Language:English
Published: Elsevier 2023-01-01
Series:Ecotoxicology and Environmental Safety
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0147651322013203
Description
Summary:Chronic copper exposure could cause potential nephrotoxicity and effective therapy strategies are limited. This study investigated the protective effects of curcumin on copper sulfate (CuSO4)-induced renal damage in a mouse model and the underlying molecular mechanisms. Mice were administrated orally with CuSO4 (100 mg/kg per day) in combination with or without curcumin (50, 100 or 200 mg/kg per day, orally) for 28 days. Results showed that curcumin supplementation significantly reduce the Cu accumulation in the kidney tissues of mice and improved CuSO4-induced renal dysfunction. Furthermore, curcumin supplantation also significantly ameliorated Cu exposure-induced oxidative stress and tubular necrosis in the kidneys of mice. Moreover, compared to the CuSO4 alone group, curcumin supplementation at 200 mg/kg per day significantly decreased CuSO4-induced the expression of p53, Bax, IL-1β, IL-6, and TNF-α proteins, levels of NF-κB mRNA, levels of caspases-9 and − 3 activities, and cell apoptosis, and significantly increased the levels of Nrf2 and HO-1 mRNAs in the kidney tissues. In conclusion, for the first time, our results reveal that curcumin could trigger the inhibition of oxidative stress, mitochondrial apoptotic, p53, and NF-κB pathways and the activation of Nrf2/HO-1 pathway to ameliorate Cu overload-induced nephrotoxicity in a mouse model. Our study highlights that curcumin supplementation may be a promising treatment strategy for treating copper overload-caused nephrotoxicity.
ISSN:0147-6513