Uniqueness of difference polynomials

Let $ f(z) $ be a transcendental meromorphic function of finite order and $ c\in\Bbb{C} $ be a nonzero constant. For any $ n\in\Bbb{N}^{+} $, suppose that $ P(z, f) $ is a difference polynomial in $ f(z) $ such as $ P(z, f) = a_{n}f(z+nc)+a_{n-1}f(z+(n-1)c)+\cdots+a_{1}f(z+c)+a_{0}f(z) $, where $ a_...

Full description

Bibliographic Details
Main Authors: Xiaomei Zhang, Xiang Chen
Format: Article
Language:English
Published: AIMS Press 2021-07-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2021608?viewType=HTML
_version_ 1818888243277463552
author Xiaomei Zhang
Xiang Chen
author_facet Xiaomei Zhang
Xiang Chen
author_sort Xiaomei Zhang
collection DOAJ
description Let $ f(z) $ be a transcendental meromorphic function of finite order and $ c\in\Bbb{C} $ be a nonzero constant. For any $ n\in\Bbb{N}^{+} $, suppose that $ P(z, f) $ is a difference polynomial in $ f(z) $ such as $ P(z, f) = a_{n}f(z+nc)+a_{n-1}f(z+(n-1)c)+\cdots+a_{1}f(z+c)+a_{0}f(z) $, where $ a_{k} (k = 0, 1, 2, \cdots, n) $ are not all zero complex numbers. In this paper, the authors investigate the uniqueness problems of $ P(z, f) $.
first_indexed 2024-12-19T16:50:02Z
format Article
id doaj.art-be3559b961664e76ac41e9c8797e48d6
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-19T16:50:02Z
publishDate 2021-07-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-be3559b961664e76ac41e9c8797e48d62022-12-21T20:13:34ZengAIMS PressAIMS Mathematics2473-69882021-07-01610104851049410.3934/math.2021608Uniqueness of difference polynomialsXiaomei Zhang 0Xiang Chen11. Department of Basic Courses, Guangzhou Maritime University, Guangzhou 510725, China2. School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning 437100, ChinaLet $ f(z) $ be a transcendental meromorphic function of finite order and $ c\in\Bbb{C} $ be a nonzero constant. For any $ n\in\Bbb{N}^{+} $, suppose that $ P(z, f) $ is a difference polynomial in $ f(z) $ such as $ P(z, f) = a_{n}f(z+nc)+a_{n-1}f(z+(n-1)c)+\cdots+a_{1}f(z+c)+a_{0}f(z) $, where $ a_{k} (k = 0, 1, 2, \cdots, n) $ are not all zero complex numbers. In this paper, the authors investigate the uniqueness problems of $ P(z, f) $.https://www.aimspress.com/article/doi/10.3934/math.2021608?viewType=HTMLdifference polynomialborel exceptional valuesuniqueness
spellingShingle Xiaomei Zhang
Xiang Chen
Uniqueness of difference polynomials
AIMS Mathematics
difference polynomial
borel exceptional values
uniqueness
title Uniqueness of difference polynomials
title_full Uniqueness of difference polynomials
title_fullStr Uniqueness of difference polynomials
title_full_unstemmed Uniqueness of difference polynomials
title_short Uniqueness of difference polynomials
title_sort uniqueness of difference polynomials
topic difference polynomial
borel exceptional values
uniqueness
url https://www.aimspress.com/article/doi/10.3934/math.2021608?viewType=HTML
work_keys_str_mv AT xiaomeizhang uniquenessofdifferencepolynomials
AT xiangchen uniquenessofdifferencepolynomials