AKR2A is involved in the flowering process of Arabidopsis thaliana

Flowering at an appropriate time is crucial for plant development and reproduction. In Arabidopsis, the flowering process is managed by a regulatory network composed of at least 6 independent pathways. As a core protein in flowering regulation, FLOWERING LOCUS T (FT) participates in almost all these...

Full description

Bibliographic Details
Main Authors: Qian Tang, Ya-Nan Zhao, Shan Luo, Shan Lu
Format: Article
Language:English
Published: Taylor & Francis Group 2022-12-01
Series:Plant Signaling & Behavior
Subjects:
Online Access:http://dx.doi.org/10.1080/15592324.2022.2100685
Description
Summary:Flowering at an appropriate time is crucial for plant development and reproduction. In Arabidopsis, the flowering process is managed by a regulatory network composed of at least 6 independent pathways. As a core protein in flowering regulation, FLOWERING LOCUS T (FT) participates in almost all these pathways. ANKYRIN REPEAT-CONTAINING PROTEIN 2A (AKR2A) was initially discovered as a 14-3-3-interacting protein. It was then found to be involved in the transportation of chloroplast outer membrane proteins and the resistance to low-temperature stress. Here, we identified an akr2a null mutant with a delayed flowering phenotype. Through the quantitative real-time PCR (qRT-PCR) and bimolecular fluorescence complementation (BiFC) assays, we demonstrated that AKR2A modulates the flowering process through its interaction with FT.
ISSN:1559-2316
1559-2324