Summary: | In dairy farms automatic milking systems and grazing, traffic to the robot is the cornerstone of profitability as higher milking frequency enhances milk yield. In this study, we investigated whether shortening the minimum milking interval (MMI), i.e., the required time between two milkings for an animal to get access to the milking unit, coupled with high concentrate allocation, could increase the daily milking frequency (MF, milking/cow/day) and consequently the milk yield of grazing cows. Two groups of cows (<i>n</i> = 19 and <i>n</i> = 20) belonging to the same herd were discriminated based on concentrate supply (high vs. low: 4 vs. 2 kg/cow/day) and then further divided on the basis of MMI (4 h vs. 6 h) so that four groups were formed (HC4 h–HC6 h–LC4 h and finally LC6 h). Higher concentrate allocation induced a rise in milk yield (MY, kg/cow/day) and allowed to stabilize it in periods of grass shortage but did not influence milking frequency, while shorter MMI (4 h) was correlated with higher MF without effect on MY. A combination of both strategies (4 h and high concentrate) improved the traffic globally to the robot. This result was linked to a reduction of refused milking and, therefore, the decrease in returns to the robot. This strategy could be advised to maximize the system’s efficiency during periods of high milk sales. When the economic conditions do not favour the increase in concentrate supply, short MMI could facilitate the traffic and increase the efficiency of returns.
|