Uncertainty Analysis of Neutron Diffusion Eigenvalue Problem Based on Reduced-order Model
In order to improve the efficiency of core physical uncertainty analysis based on sampling statistics, the proper orthogonal decomposition (POD) and Galerkin projection method were combined to study the application feasibility of reduced-order model based on POD-Galerkin method in core physical unce...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Editorial Board of Atomic Energy Science and Technology
2023-08-01
|
Series: | Yuanzineng kexue jishu |
Subjects: | |
Online Access: | https://www.aest.org.cn/CN/10.7538/yzk.2022.youxian.0835 |
_version_ | 1797685321246179328 |
---|---|
author | In order to improve the efficiency of core physical uncertainty analysis based on sampling statistics, the proper orthogonal decomposition (POD) and Galerkin projection method were combined to study the application feasibility of reduced-order model based on POD-Galerkin method in core physical uncertainty analysis. The two-dimensional two group TWIGL benchmark question was taken as the research object, the key variation characteristics of the core flux distribution were extracted under the finite perturbation of the group constants of each material region, and the full-order neutron diffusion problem was projected on the variation characteristics to establish a reduced-order neutron diffusion model. The reduced-order model was used to replace the full-order model to carry out the uncertainty analysis of the group constants of the material region. The results show that the bias of the mathematical expectation of keff calculated by reduced-order and full-order models is close to 1 pcm. In addition, compared with the calculation time required for uncertainty analysis of full-order model, the analysis time of reduced-order model (including the calculation time of the full-order model required for the construction of reduced-order model) is only 11.48%, which greatly improves the efficiency of uncertainty analysis. The biases of mathematical expectation of keff calculated by reduced-order and full-order models based on Latin hypercube sampling and simple random sampling are less than 8 pcm, and under the same sample size, the bias from the Latin hypercube sampling result is smaller. From the TWIGL benchmark test results, under the same sample size, Latin hypercube sampling method is more recommended for POD-Galerkin reduced-order model. |
author_facet | In order to improve the efficiency of core physical uncertainty analysis based on sampling statistics, the proper orthogonal decomposition (POD) and Galerkin projection method were combined to study the application feasibility of reduced-order model based on POD-Galerkin method in core physical uncertainty analysis. The two-dimensional two group TWIGL benchmark question was taken as the research object, the key variation characteristics of the core flux distribution were extracted under the finite perturbation of the group constants of each material region, and the full-order neutron diffusion problem was projected on the variation characteristics to establish a reduced-order neutron diffusion model. The reduced-order model was used to replace the full-order model to carry out the uncertainty analysis of the group constants of the material region. The results show that the bias of the mathematical expectation of keff calculated by reduced-order and full-order models is close to 1 pcm. In addition, compared with the calculation time required for uncertainty analysis of full-order model, the analysis time of reduced-order model (including the calculation time of the full-order model required for the construction of reduced-order model) is only 11.48%, which greatly improves the efficiency of uncertainty analysis. The biases of mathematical expectation of keff calculated by reduced-order and full-order models based on Latin hypercube sampling and simple random sampling are less than 8 pcm, and under the same sample size, the bias from the Latin hypercube sampling result is smaller. From the TWIGL benchmark test results, under the same sample size, Latin hypercube sampling method is more recommended for POD-Galerkin reduced-order model. |
author_sort | In order to improve the efficiency of core physical uncertainty analysis based on sampling statistics, the proper orthogonal decomposition (POD) and Galerkin projection method were combined to study the application feasibility of reduced-order model based on POD-Galerkin method in core physical uncertainty analysis. The two-dimensional two group TWIGL benchmark question was taken as the research object, the key variation characteristics of the core flux distribution were extracted under the finite perturbation of the group constants of each material region, and the full-order neutron diffusion problem was projected on the variation characteristics to establish a reduced-order neutron diffusion model. The reduced-order model was used to replace the full-order model to carry out the uncertainty analysis of the group constants of the material region. The results show that the bias of the mathematical expectation of keff calculated by reduced-order and full-order models is close to 1 pcm. In addition, compared with the calculation time required for uncertainty analysis of full-order model, the analysis time of reduced-order model (including the calculation time of the full-order model required for the construction of reduced-order model) is only 11.48%, which greatly improves the efficiency of uncertainty analysis. The biases of mathematical expectation of keff calculated by reduced-order and full-order models based on Latin hypercube sampling and simple random sampling are less than 8 pcm, and under the same sample size, the bias from the Latin hypercube sampling result is smaller. From the TWIGL benchmark test results, under the same sample size, Latin hypercube sampling method is more recommended for POD-Galerkin reduced-order model. |
collection | DOAJ |
description | In order to improve the efficiency of core physical uncertainty analysis based on sampling statistics, the proper orthogonal decomposition (POD) and Galerkin projection method were combined to study the application feasibility of reduced-order model based on POD-Galerkin method in core physical uncertainty analysis. The two-dimensional two group TWIGL benchmark question was taken as the research object, the key variation characteristics of the core flux distribution were extracted under the finite perturbation of the group constants of each material region, and the full-order neutron diffusion problem was projected on the variation characteristics to establish a reduced-order neutron diffusion model. The reduced-order model was used to replace the full-order model to carry out the uncertainty analysis of the group constants of the material region. The results show that the bias of the mathematical expectation of keff calculated by reduced-order and full-order models is close to 1 pcm. In addition, compared with the calculation time required for uncertainty analysis of full-order model, the analysis time of reduced-order model (including the calculation time of the full-order model required for the construction of reduced-order model) is only 11.48%, which greatly improves the efficiency of uncertainty analysis. The biases of mathematical expectation of keff calculated by reduced-order and full-order models based on Latin hypercube sampling and simple random sampling are less than 8 pcm, and under the same sample size, the bias from the Latin hypercube sampling result is smaller. From the TWIGL benchmark test results, under the same sample size, Latin hypercube sampling method is more recommended for POD-Galerkin reduced-order model. |
first_indexed | 2024-03-12T00:42:30Z |
format | Article |
id | doaj.art-be47f940308546258229a4da61f078ca |
institution | Directory Open Access Journal |
issn | 1000-6931 |
language | English |
last_indexed | 2024-03-12T00:42:30Z |
publishDate | 2023-08-01 |
publisher | Editorial Board of Atomic Energy Science and Technology |
record_format | Article |
series | Yuanzineng kexue jishu |
spelling | doaj.art-be47f940308546258229a4da61f078ca2023-09-15T02:24:29ZengEditorial Board of Atomic Energy Science and TechnologyYuanzineng kexue jishu1000-69312023-08-0157815841591Uncertainty Analysis of Neutron Diffusion Eigenvalue Problem Based on Reduced-order ModelIn order to improve the efficiency of core physical uncertainty analysis based on sampling statistics, the proper orthogonal decomposition (POD) and Galerkin projection method were combined to study the application feasibility of reduced-order model based on POD-Galerkin method in core physical uncertainty analysis. The two-dimensional two group TWIGL benchmark question was taken as the research object, the key variation characteristics of the core flux distribution were extracted under the finite perturbation of the group constants of each material region, and the full-order neutron diffusion problem was projected on the variation characteristics to establish a reduced-order neutron diffusion model. The reduced-order model was used to replace the full-order model to carry out the uncertainty analysis of the group constants of the material region. The results show that the bias of the mathematical expectation of keff calculated by reduced-order and full-order models is close to 1 pcm. In addition, compared with the calculation time required for uncertainty analysis of full-order model, the analysis time of reduced-order model (including the calculation time of the full-order model required for the construction of reduced-order model) is only 11.48%, which greatly improves the efficiency of uncertainty analysis. The biases of mathematical expectation of keff calculated by reduced-order and full-order models based on Latin hypercube sampling and simple random sampling are less than 8 pcm, and under the same sample size, the bias from the Latin hypercube sampling result is smaller. From the TWIGL benchmark test results, under the same sample size, Latin hypercube sampling method is more recommended for POD-Galerkin reduced-order model.0reduced-order model, proper orthogonal decomposition, Galerkin projection, uncertainty analysisIn order to improve the efficiency of core physical uncertainty analysis based on sampling statistics, the proper orthogonal decomposition (POD) and Galerkin projection method were combined to study the application feasibility of reduced-order model based on POD-Galerkin method in core physical uncertainty analysis. The two-dimensional two group TWIGL benchmark question was taken as the research object, the key variation characteristics of the core flux distribution were extracted under the finite perturbation of the group constants of each material region, and the full-order neutron diffusion problem was projected on the variation characteristics to establish a reduced-order neutron diffusion model. The reduced-order model was used to replace the full-order model to carry out the uncertainty analysis of the group constants of the material region. The results show that the bias of the mathematical expectation of keff calculated by reduced-order and full-order models is close to 1 pcm. In addition, compared with the calculation time required for uncertainty analysis of full-order model, the analysis time of reduced-order model (including the calculation time of the full-order model required for the construction of reduced-order model) is only 11.48%, which greatly improves the efficiency of uncertainty analysis. The biases of mathematical expectation of keff calculated by reduced-order and full-order models based on Latin hypercube sampling and simple random sampling are less than 8 pcm, and under the same sample size, the bias from the Latin hypercube sampling result is smaller. From the TWIGL benchmark test results, under the same sample size, Latin hypercube sampling method is more recommended for POD-Galerkin reduced-order model.https://www.aest.org.cn/CN/10.7538/yzk.2022.youxian.0835reduced-order modelproper orthogonal decompositiongalerkin projectionuncertainty analysis |
spellingShingle | In order to improve the efficiency of core physical uncertainty analysis based on sampling statistics, the proper orthogonal decomposition (POD) and Galerkin projection method were combined to study the application feasibility of reduced-order model based on POD-Galerkin method in core physical uncertainty analysis. The two-dimensional two group TWIGL benchmark question was taken as the research object, the key variation characteristics of the core flux distribution were extracted under the finite perturbation of the group constants of each material region, and the full-order neutron diffusion problem was projected on the variation characteristics to establish a reduced-order neutron diffusion model. The reduced-order model was used to replace the full-order model to carry out the uncertainty analysis of the group constants of the material region. The results show that the bias of the mathematical expectation of keff calculated by reduced-order and full-order models is close to 1 pcm. In addition, compared with the calculation time required for uncertainty analysis of full-order model, the analysis time of reduced-order model (including the calculation time of the full-order model required for the construction of reduced-order model) is only 11.48%, which greatly improves the efficiency of uncertainty analysis. The biases of mathematical expectation of keff calculated by reduced-order and full-order models based on Latin hypercube sampling and simple random sampling are less than 8 pcm, and under the same sample size, the bias from the Latin hypercube sampling result is smaller. From the TWIGL benchmark test results, under the same sample size, Latin hypercube sampling method is more recommended for POD-Galerkin reduced-order model. Uncertainty Analysis of Neutron Diffusion Eigenvalue Problem Based on Reduced-order Model Yuanzineng kexue jishu reduced-order model proper orthogonal decomposition galerkin projection uncertainty analysis |
title | Uncertainty Analysis of Neutron Diffusion Eigenvalue Problem Based on Reduced-order Model |
title_full | Uncertainty Analysis of Neutron Diffusion Eigenvalue Problem Based on Reduced-order Model |
title_fullStr | Uncertainty Analysis of Neutron Diffusion Eigenvalue Problem Based on Reduced-order Model |
title_full_unstemmed | Uncertainty Analysis of Neutron Diffusion Eigenvalue Problem Based on Reduced-order Model |
title_short | Uncertainty Analysis of Neutron Diffusion Eigenvalue Problem Based on Reduced-order Model |
title_sort | uncertainty analysis of neutron diffusion eigenvalue problem based on reduced order model |
topic | reduced-order model proper orthogonal decomposition galerkin projection uncertainty analysis |
url | https://www.aest.org.cn/CN/10.7538/yzk.2022.youxian.0835 |
work_keys_str_mv | AT inordertoimprovetheefficiencyofcorephysicaluncertaintyanalysisbasedonsamplingstatisticstheproperorthogonaldecompositionpodandgalerkinprojectionmethodwerecombinedtostudytheapplicationfeasibilityofreducedordermodelbasedonpodgalerkinmethodincorephysicaluncer uncertaintyanalysisofneutrondiffusioneigenvalueproblembasedonreducedordermodel |