Summary: | The interconnected cloud (Intercloud) federation is an emerging paradigm that revolutionizes the scalable service provision of geographically distributed resources. Large-scale distributed resources require well-coordinated and automated frameworks to facilitate service provision in a seamless and systematic manner. Unquestionably, standalone service providers must communicate and federate their cloud sites with other vendors to enable the infinite pooling of resources. The pooling of these resources provides uninterpretable services to increasingly growing cloud users more efficiently, and ensures an improved Service Level Agreement (SLA). However, the research of Intercloud resource management is in its infancy. Therefore, standard interfaces, protocols, and uniform architectural components need to be developed for seamless interaction among federated clouds. In this study, we propose a distributed meta-brokering-enabled scheduling framework for provision of user application services in the federated cloud environment. Modularized architecture of the proposed system with uniform configuration in participating resource sites orchestrate the critical operations of resource management effectively, and form the federation schema. Overlaid meta-brokering instances are implemented on the top of local resource brokers to keep the global functionality isolated. These instances in overlay topology communicate in a P2P manner to maintain decentralization, high scalability, and load manageability. The proposed framework has been implemented and evaluated by extending the Java-based CloudSim 3.0.3 simulation application programming interfaces (APIs). The presented results validate the proposed model and its efficiency to facilitate user application execution with the desired QoS parameters.
|