Integrated operation of gas and power system through the P2P market mechanism

Abstract Peer‐to‐peer (P2P) energy trading is a new technology for integrating distributed energy resources (DERs) into the power system. A P2P market allows direct energy trading between end‐users, enables local power and energy equilibrium and supports power grid operations. As a common DER, gas‐f...

Full description

Bibliographic Details
Main Authors: Meysam Feili, Mohammad Taghi Ameli
Format: Article
Language:English
Published: Wiley 2023-08-01
Series:IET Smart Grid
Subjects:
Online Access:https://doi.org/10.1049/stg2.12104
_version_ 1797744937484156928
author Meysam Feili
Mohammad Taghi Ameli
author_facet Meysam Feili
Mohammad Taghi Ameli
author_sort Meysam Feili
collection DOAJ
description Abstract Peer‐to‐peer (P2P) energy trading is a new technology for integrating distributed energy resources (DERs) into the power system. A P2P market allows direct energy trading between end‐users, enables local power and energy equilibrium and supports power grid operations. As a common DER, gas‐fired power plants are employed to deal with the intermittency of the power system due to their flexible characteristics. Therefore, the intermittency in the power system transmits to the gas system through the gas‐fired power plants, which makes the operation of these systems even more interdependent and cost‐effective. This paper proposes a market‐based two‐stage framework for the integrated operation of power and natural gas grids taking into account demand response and both network constraints. In the first stage (scheduling stage), the MINLP‐based optimisation approach is used for the optimal scheduling of two energy carriers considering AC power flow and gas hydraulic calculations for the next 24 h. Then, in the second stage, the continuous double auction (CDA)‐based P2P energy trading approach is used for enabling customers to trade energy with each other. To simulate human trader behaviour and maximises the benefits of customers, the authors considered the optimum bidding strategy through the zero intelligent plus trader model. The simulations executed on a 33‐bus power distribution grid and a 33‐node gas network indicate that the proposed framework can dramatically reduce the total operational cost and improve the performance of both networks. Using only the MINLP optimisation problem, first stage, the total operational cost of both networks is reduced by 15.58%, while the voltage profile at the end of the power grid is improved by about 7%. In the next stage, the total operating cost of both networks is further decreased by 29.31% via implementing the P2P energy trading mechanism.
first_indexed 2024-03-12T15:16:20Z
format Article
id doaj.art-be494d3b4eb64c518a3ce325bf267770
institution Directory Open Access Journal
issn 2515-2947
language English
last_indexed 2024-03-12T15:16:20Z
publishDate 2023-08-01
publisher Wiley
record_format Article
series IET Smart Grid
spelling doaj.art-be494d3b4eb64c518a3ce325bf2677702023-08-11T12:33:32ZengWileyIET Smart Grid2515-29472023-08-016435937910.1049/stg2.12104Integrated operation of gas and power system through the P2P market mechanismMeysam Feili0Mohammad Taghi Ameli1Department of Electrical Engineering Shahid Beheshti University Tehran IranDepartment of Electrical Engineering Shahid Beheshti University Tehran IranAbstract Peer‐to‐peer (P2P) energy trading is a new technology for integrating distributed energy resources (DERs) into the power system. A P2P market allows direct energy trading between end‐users, enables local power and energy equilibrium and supports power grid operations. As a common DER, gas‐fired power plants are employed to deal with the intermittency of the power system due to their flexible characteristics. Therefore, the intermittency in the power system transmits to the gas system through the gas‐fired power plants, which makes the operation of these systems even more interdependent and cost‐effective. This paper proposes a market‐based two‐stage framework for the integrated operation of power and natural gas grids taking into account demand response and both network constraints. In the first stage (scheduling stage), the MINLP‐based optimisation approach is used for the optimal scheduling of two energy carriers considering AC power flow and gas hydraulic calculations for the next 24 h. Then, in the second stage, the continuous double auction (CDA)‐based P2P energy trading approach is used for enabling customers to trade energy with each other. To simulate human trader behaviour and maximises the benefits of customers, the authors considered the optimum bidding strategy through the zero intelligent plus trader model. The simulations executed on a 33‐bus power distribution grid and a 33‐node gas network indicate that the proposed framework can dramatically reduce the total operational cost and improve the performance of both networks. Using only the MINLP optimisation problem, first stage, the total operational cost of both networks is reduced by 15.58%, while the voltage profile at the end of the power grid is improved by about 7%. In the next stage, the total operating cost of both networks is further decreased by 29.31% via implementing the P2P energy trading mechanism.https://doi.org/10.1049/stg2.12104demand side managementenergy storagemicrogrid, nanogrid, and peer‐to‐peer energy tradingpower markets
spellingShingle Meysam Feili
Mohammad Taghi Ameli
Integrated operation of gas and power system through the P2P market mechanism
IET Smart Grid
demand side management
energy storage
microgrid, nanogrid, and peer‐to‐peer energy trading
power markets
title Integrated operation of gas and power system through the P2P market mechanism
title_full Integrated operation of gas and power system through the P2P market mechanism
title_fullStr Integrated operation of gas and power system through the P2P market mechanism
title_full_unstemmed Integrated operation of gas and power system through the P2P market mechanism
title_short Integrated operation of gas and power system through the P2P market mechanism
title_sort integrated operation of gas and power system through the p2p market mechanism
topic demand side management
energy storage
microgrid, nanogrid, and peer‐to‐peer energy trading
power markets
url https://doi.org/10.1049/stg2.12104
work_keys_str_mv AT meysamfeili integratedoperationofgasandpowersystemthroughthep2pmarketmechanism
AT mohammadtaghiameli integratedoperationofgasandpowersystemthroughthep2pmarketmechanism