Bell Distribution Series Defined on Subclasses of Bi-Univalent Functions That Are Subordinate to Horadam Polynomials

Several different subclasses of the bi-univalent function class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Σ</mi></semantics></math></inline-formu...

Full description

Bibliographic Details
Main Authors: Ibtisam Aldawish, Basem Frasin, Ala Amourah
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/4/362
_version_ 1827745926789201920
author Ibtisam Aldawish
Basem Frasin
Ala Amourah
author_facet Ibtisam Aldawish
Basem Frasin
Ala Amourah
author_sort Ibtisam Aldawish
collection DOAJ
description Several different subclasses of the bi-univalent function class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Σ</mi></semantics></math></inline-formula> were introduced and studied by many authors using distribution series like Pascal distribution, Poisson distribution, Borel distribution, the Mittag-Leffler-type Borel distribution, Miller–Ross-Type Poisson Distribution. In the present paper, by making use of the Bell distribution, we introduce and investigate a new family <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="fraktur">G</mi><mrow><mi mathvariant="sans-serif">Σ</mi></mrow><mi>t</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>λ</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of normalized bi-univalent functions in the open unit disk <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">U</mi></semantics></math></inline-formula>, which are associated with the Horadam polynomials and estimate the second and the third coefficients in the Taylor-Maclaurin expansions of functions belonging to this class. Furthermore, we establish the Fekete–Szegö inequality for functions in the family <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="fraktur">G</mi><mrow><mi mathvariant="sans-serif">Σ</mi></mrow><mi>t</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>λ</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>)</mo></mrow><mo>.</mo></mrow></semantics></math></inline-formula> After specializing the parameters used in our main results, a number of new results are demonstrated to follow.
first_indexed 2024-03-11T05:15:22Z
format Article
id doaj.art-be4ad6d54dd848e59dfe56b6176a5581
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-11T05:15:22Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-be4ad6d54dd848e59dfe56b6176a55812023-11-17T18:19:19ZengMDPI AGAxioms2075-16802023-04-0112436210.3390/axioms12040362Bell Distribution Series Defined on Subclasses of Bi-Univalent Functions That Are Subordinate to Horadam PolynomialsIbtisam Aldawish0Basem Frasin1Ala Amourah2Department of Mathematics and Statistics, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), Riyadh 11564, Saudi ArabiaFaculty of Science, Department of Mathematics, Al al-Bayt University, Mafraq 25113, JordanDepartment of Mathematics, Faculty of Science and Technology, Irbid National University, Irbid 21110, JordanSeveral different subclasses of the bi-univalent function class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Σ</mi></semantics></math></inline-formula> were introduced and studied by many authors using distribution series like Pascal distribution, Poisson distribution, Borel distribution, the Mittag-Leffler-type Borel distribution, Miller–Ross-Type Poisson Distribution. In the present paper, by making use of the Bell distribution, we introduce and investigate a new family <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="fraktur">G</mi><mrow><mi mathvariant="sans-serif">Σ</mi></mrow><mi>t</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>λ</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of normalized bi-univalent functions in the open unit disk <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">U</mi></semantics></math></inline-formula>, which are associated with the Horadam polynomials and estimate the second and the third coefficients in the Taylor-Maclaurin expansions of functions belonging to this class. Furthermore, we establish the Fekete–Szegö inequality for functions in the family <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="fraktur">G</mi><mrow><mi mathvariant="sans-serif">Σ</mi></mrow><mi>t</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>λ</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>)</mo></mrow><mo>.</mo></mrow></semantics></math></inline-formula> After specializing the parameters used in our main results, a number of new results are demonstrated to follow.https://www.mdpi.com/2075-1680/12/4/362fekete-Szegö problemhoradam polynomialsbi-univalent functionsbell distributionanalytic functions
spellingShingle Ibtisam Aldawish
Basem Frasin
Ala Amourah
Bell Distribution Series Defined on Subclasses of Bi-Univalent Functions That Are Subordinate to Horadam Polynomials
Axioms
fekete-Szegö problem
horadam polynomials
bi-univalent functions
bell distribution
analytic functions
title Bell Distribution Series Defined on Subclasses of Bi-Univalent Functions That Are Subordinate to Horadam Polynomials
title_full Bell Distribution Series Defined on Subclasses of Bi-Univalent Functions That Are Subordinate to Horadam Polynomials
title_fullStr Bell Distribution Series Defined on Subclasses of Bi-Univalent Functions That Are Subordinate to Horadam Polynomials
title_full_unstemmed Bell Distribution Series Defined on Subclasses of Bi-Univalent Functions That Are Subordinate to Horadam Polynomials
title_short Bell Distribution Series Defined on Subclasses of Bi-Univalent Functions That Are Subordinate to Horadam Polynomials
title_sort bell distribution series defined on subclasses of bi univalent functions that are subordinate to horadam polynomials
topic fekete-Szegö problem
horadam polynomials
bi-univalent functions
bell distribution
analytic functions
url https://www.mdpi.com/2075-1680/12/4/362
work_keys_str_mv AT ibtisamaldawish belldistributionseriesdefinedonsubclassesofbiunivalentfunctionsthataresubordinatetohoradampolynomials
AT basemfrasin belldistributionseriesdefinedonsubclassesofbiunivalentfunctionsthataresubordinatetohoradampolynomials
AT alaamourah belldistributionseriesdefinedonsubclassesofbiunivalentfunctionsthataresubordinatetohoradampolynomials