Numerical analysis of the neutron multigroup $SP_N$ equations
The multigroup neutron $SP_N$ equations, which are an approximation of the neutron transport equation, are used to model nuclear reactor cores. In their steady state, these equations can be written as a source problem or an eigenvalue problem. We study the resolution of those two problems with an $H...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2021-07-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.189/ |
_version_ | 1797651562872438784 |
---|---|
author | Jamelot, Erell Madiot, François |
author_facet | Jamelot, Erell Madiot, François |
author_sort | Jamelot, Erell |
collection | DOAJ |
description | The multigroup neutron $SP_N$ equations, which are an approximation of the neutron transport equation, are used to model nuclear reactor cores. In their steady state, these equations can be written as a source problem or an eigenvalue problem. We study the resolution of those two problems with an $H^1$-conforming finite element method and a Discontinuous Galerkin method, namely the Symmetric Interior Penalty Galerkin method. |
first_indexed | 2024-03-11T16:17:37Z |
format | Article |
id | doaj.art-be546fbc36134d0cb3db8ca08723400b |
institution | Directory Open Access Journal |
issn | 1778-3569 |
language | English |
last_indexed | 2024-03-11T16:17:37Z |
publishDate | 2021-07-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj.art-be546fbc36134d0cb3db8ca08723400b2023-10-24T14:18:44ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692021-07-01359553354510.5802/crmath.18910.5802/crmath.189Numerical analysis of the neutron multigroup $SP_N$ equationsJamelot, Erell0Madiot, François1Université Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des Fluides, 91191, Gif-sur-Yvette, FranceUniversité Paris-Saclay, CEA, Service d’Études des Réacteurs et de Mathématiques Appliquées, 91191, Gif-sur-Yvette, FranceThe multigroup neutron $SP_N$ equations, which are an approximation of the neutron transport equation, are used to model nuclear reactor cores. In their steady state, these equations can be written as a source problem or an eigenvalue problem. We study the resolution of those two problems with an $H^1$-conforming finite element method and a Discontinuous Galerkin method, namely the Symmetric Interior Penalty Galerkin method.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.189/ |
spellingShingle | Jamelot, Erell Madiot, François Numerical analysis of the neutron multigroup $SP_N$ equations Comptes Rendus. Mathématique |
title | Numerical analysis of the neutron multigroup $SP_N$ equations |
title_full | Numerical analysis of the neutron multigroup $SP_N$ equations |
title_fullStr | Numerical analysis of the neutron multigroup $SP_N$ equations |
title_full_unstemmed | Numerical analysis of the neutron multigroup $SP_N$ equations |
title_short | Numerical analysis of the neutron multigroup $SP_N$ equations |
title_sort | numerical analysis of the neutron multigroup sp n equations |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.189/ |
work_keys_str_mv | AT jameloterell numericalanalysisoftheneutronmultigroupspnequations AT madiotfrancois numericalanalysisoftheneutronmultigroupspnequations |