Numerical analysis of the neutron multigroup $SP_N$ equations

The multigroup neutron $SP_N$ equations, which are an approximation of the neutron transport equation, are used to model nuclear reactor cores. In their steady state, these equations can be written as a source problem or an eigenvalue problem. We study the resolution of those two problems with an $H...

Full description

Bibliographic Details
Main Authors: Jamelot, Erell, Madiot, François
Format: Article
Language:English
Published: Académie des sciences 2021-07-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.189/
_version_ 1797651562872438784
author Jamelot, Erell
Madiot, François
author_facet Jamelot, Erell
Madiot, François
author_sort Jamelot, Erell
collection DOAJ
description The multigroup neutron $SP_N$ equations, which are an approximation of the neutron transport equation, are used to model nuclear reactor cores. In their steady state, these equations can be written as a source problem or an eigenvalue problem. We study the resolution of those two problems with an $H^1$-conforming finite element method and a Discontinuous Galerkin method, namely the Symmetric Interior Penalty Galerkin method.
first_indexed 2024-03-11T16:17:37Z
format Article
id doaj.art-be546fbc36134d0cb3db8ca08723400b
institution Directory Open Access Journal
issn 1778-3569
language English
last_indexed 2024-03-11T16:17:37Z
publishDate 2021-07-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj.art-be546fbc36134d0cb3db8ca08723400b2023-10-24T14:18:44ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692021-07-01359553354510.5802/crmath.18910.5802/crmath.189Numerical analysis of the neutron multigroup $SP_N$ equationsJamelot, Erell0Madiot, François1Université Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des Fluides, 91191, Gif-sur-Yvette, FranceUniversité Paris-Saclay, CEA, Service d’Études des Réacteurs et de Mathématiques Appliquées, 91191, Gif-sur-Yvette, FranceThe multigroup neutron $SP_N$ equations, which are an approximation of the neutron transport equation, are used to model nuclear reactor cores. In their steady state, these equations can be written as a source problem or an eigenvalue problem. We study the resolution of those two problems with an $H^1$-conforming finite element method and a Discontinuous Galerkin method, namely the Symmetric Interior Penalty Galerkin method.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.189/
spellingShingle Jamelot, Erell
Madiot, François
Numerical analysis of the neutron multigroup $SP_N$ equations
Comptes Rendus. Mathématique
title Numerical analysis of the neutron multigroup $SP_N$ equations
title_full Numerical analysis of the neutron multigroup $SP_N$ equations
title_fullStr Numerical analysis of the neutron multigroup $SP_N$ equations
title_full_unstemmed Numerical analysis of the neutron multigroup $SP_N$ equations
title_short Numerical analysis of the neutron multigroup $SP_N$ equations
title_sort numerical analysis of the neutron multigroup sp n equations
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.189/
work_keys_str_mv AT jameloterell numericalanalysisoftheneutronmultigroupspnequations
AT madiotfrancois numericalanalysisoftheneutronmultigroupspnequations