Aptamer Technologies in Neuroscience, Neuro-Diagnostics and Neuro-Medicine Development

Aptamers developed using in vitro Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology are single-stranded nucleic acids 10–100 nucleotides in length. Their targets, often with specificity and high affinity, range from ions and small molecules to proteins and other biological...

Full description

Bibliographic Details
Main Authors: Bang Wang, Firas Kobeissy, Mojtaba Golpich, Guangzheng Cai, Xiaowei Li, Reem Abedi, William Haskins, Weihong Tan, Steven A. Benner, Kevin K. W. Wang
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/29/5/1124
Description
Summary:Aptamers developed using in vitro Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology are single-stranded nucleic acids 10–100 nucleotides in length. Their targets, often with specificity and high affinity, range from ions and small molecules to proteins and other biological molecules as well as larger systems, including cells, tissues, and animals. Aptamers often rival conventional antibodies with improved performance, due to aptamers’ unique biophysical and biochemical properties, including small size, synthetic accessibility, facile modification, low production cost, and low immunogenicity. Therefore, there is sustained interest in engineering and adapting aptamers for many applications, including diagnostics and therapeutics. Recently, aptamers have shown promise as early diagnostic biomarkers and in precision medicine for neurodegenerative and neurological diseases. Here, we critically review neuro-targeting aptamers and their potential applications in neuroscience research, neuro-diagnostics, and neuro-medicine. We also discuss challenges that must be overcome, including delivery across the blood–brain barrier, increased affinity, and improved in vivo stability and in vivo pharmacokinetic properties.
ISSN:1420-3049