Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury

Murine- and human-induced pluripotent stem cell-derived neural stem/progenitor cells (iPSC-NS/PCs) promote functional recovery following transplantation into the injured spinal cord in rodents and primates. Although remyelination of spared demyelinated axons is a critical mechanism in the regenerati...

Full description

Bibliographic Details
Main Authors: Soya Kawabata, Morito Takano, Yuko Numasawa-Kuroiwa, Go Itakura, Yoshiomi Kobayashi, Yuichiro Nishiyama, Keiko Sugai, Soraya Nishimura, Hiroki Iwai, Miho Isoda, Shinsuke Shibata, Jun Kohyama, Akio Iwanami, Yoshiaki Toyama, Morio Matsumoto, Masaya Nakamura, Hideyuki Okano
Format: Article
Language:English
Published: Elsevier 2016-01-01
Series:Stem Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2213671115003495
Description
Summary:Murine- and human-induced pluripotent stem cell-derived neural stem/progenitor cells (iPSC-NS/PCs) promote functional recovery following transplantation into the injured spinal cord in rodents and primates. Although remyelination of spared demyelinated axons is a critical mechanism in the regeneration of the injured spinal cord, human iPSC-NS/PCs predominantly differentiate into neurons both in vitro and in vivo. We therefore took advantage of our recently developed protocol to obtain human-induced pluripotent stem cell-derived oligodendrocyte precursor cell-enriched neural stem/progenitor cells and report the benefits of transplanting these cells in a spinal cord injury (SCI) model. We describe how this approach contributes to the robust remyelination of demyelinated axons and facilitates functional recovery after SCI.
ISSN:2213-6711