Sharp inequalities related to the volume of the unit ball in R n $\mathbb{R}^{n}$

Abstract Let Ω n = π n / 2 / Γ ( n 2 + 1 ) $\Omega _{n}=\pi ^{n/2}/\Gamma (\frac{n}{2}+1)$ ( n ∈ N $n \in \mathbb{N}$ ) denote the volume of the unit ball in R n $\mathbb{R}^{n}$ . In this paper, the logarithmically complete monotonicity of a function involving the ratio of two gamma functions is pr...

Full description

Bibliographic Details
Main Authors: Xue-Feng Han, Chao-Ping Chen
Format: Article
Language:English
Published: SpringerOpen 2023-05-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:https://doi.org/10.1186/s13660-023-02933-1
_version_ 1797831840082427904
author Xue-Feng Han
Chao-Ping Chen
author_facet Xue-Feng Han
Chao-Ping Chen
author_sort Xue-Feng Han
collection DOAJ
description Abstract Let Ω n = π n / 2 / Γ ( n 2 + 1 ) $\Omega _{n}=\pi ^{n/2}/\Gamma (\frac{n}{2}+1)$ ( n ∈ N $n \in \mathbb{N}$ ) denote the volume of the unit ball in R n $\mathbb{R}^{n}$ . In this paper, the logarithmically complete monotonicity of a function involving the ratio of two gamma functions is presented, which yields a sharp double inequality for the quantity Ω n 2 / ( Ω n − 1 Ω n + 1 ) $\Omega _{n}^{2}/(\Omega _{n-1}\Omega _{n+1})$ . Also, we establish new sharp inequalities for the quantity Ω n 2 / ( Ω n − 1 Ω n + 1 ) $\Omega _{n}^{2}/(\Omega _{n-1}\Omega _{n+1})$ .
first_indexed 2024-04-09T13:59:15Z
format Article
id doaj.art-be802f5c6e13422da5ef2543a493f45f
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-04-09T13:59:15Z
publishDate 2023-05-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-be802f5c6e13422da5ef2543a493f45f2023-05-07T11:26:58ZengSpringerOpenJournal of Inequalities and Applications1029-242X2023-05-012023111410.1186/s13660-023-02933-1Sharp inequalities related to the volume of the unit ball in R n $\mathbb{R}^{n}$Xue-Feng Han0Chao-Ping Chen1School of Mathematics and Informatics, Henan Polytechnic UniversitySchool of Mathematics and Informatics, Henan Polytechnic UniversityAbstract Let Ω n = π n / 2 / Γ ( n 2 + 1 ) $\Omega _{n}=\pi ^{n/2}/\Gamma (\frac{n}{2}+1)$ ( n ∈ N $n \in \mathbb{N}$ ) denote the volume of the unit ball in R n $\mathbb{R}^{n}$ . In this paper, the logarithmically complete monotonicity of a function involving the ratio of two gamma functions is presented, which yields a sharp double inequality for the quantity Ω n 2 / ( Ω n − 1 Ω n + 1 ) $\Omega _{n}^{2}/(\Omega _{n-1}\Omega _{n+1})$ . Also, we establish new sharp inequalities for the quantity Ω n 2 / ( Ω n − 1 Ω n + 1 ) $\Omega _{n}^{2}/(\Omega _{n-1}\Omega _{n+1})$ .https://doi.org/10.1186/s13660-023-02933-1Volume of the unit n-dimensional ballGamma functionInequalitiesLogarithmically completely monotonic function
spellingShingle Xue-Feng Han
Chao-Ping Chen
Sharp inequalities related to the volume of the unit ball in R n $\mathbb{R}^{n}$
Journal of Inequalities and Applications
Volume of the unit n-dimensional ball
Gamma function
Inequalities
Logarithmically completely monotonic function
title Sharp inequalities related to the volume of the unit ball in R n $\mathbb{R}^{n}$
title_full Sharp inequalities related to the volume of the unit ball in R n $\mathbb{R}^{n}$
title_fullStr Sharp inequalities related to the volume of the unit ball in R n $\mathbb{R}^{n}$
title_full_unstemmed Sharp inequalities related to the volume of the unit ball in R n $\mathbb{R}^{n}$
title_short Sharp inequalities related to the volume of the unit ball in R n $\mathbb{R}^{n}$
title_sort sharp inequalities related to the volume of the unit ball in r n mathbb r n
topic Volume of the unit n-dimensional ball
Gamma function
Inequalities
Logarithmically completely monotonic function
url https://doi.org/10.1186/s13660-023-02933-1
work_keys_str_mv AT xuefenghan sharpinequalitiesrelatedtothevolumeoftheunitballinrnmathbbrn
AT chaopingchen sharpinequalitiesrelatedtothevolumeoftheunitballinrnmathbbrn