Giant topological and planar Hall effect in Cr_{1/3}NbS_{2}
Cr_{1/3}NbS_{2} is a transition metal dichalcogenide that has been of significant interest due to its ability to host a magnetic chiral soliton lattice. Conventional and planar Hall measurements provide valuable insight into the detection of exotic spin structures in chiral magnets. We show that the...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2022-02-01
|
Series: | Physical Review Research |
Online Access: | http://doi.org/10.1103/PhysRevResearch.4.013134 |
Summary: | Cr_{1/3}NbS_{2} is a transition metal dichalcogenide that has been of significant interest due to its ability to host a magnetic chiral soliton lattice. Conventional and planar Hall measurements provide valuable insight into the detection of exotic spin structures in chiral magnets. We show that the presence of a giant planar Hall effect (PHE) can be attributed to a tilted soliton lattice in Cr_{1/3}NbS_{2}. Our detailed angular-dependent study shows the PHE and anisotropic magnetoresistance are intrinsically linked in complex noncoplanar magnets. From the conventional Hall signal we show the presence of a giant unconventional, likely topological Hall component that is the fingerprint of noncoplanar spin textures. |
---|---|
ISSN: | 2643-1564 |