The Design of Rice Powder Production Vessel and the Pulverization of the Rice Using Numerical Simulation

In recent years, the food self-support rate of Japan is 40%, and this value is the lowest level of major advanced country. The stable supply of food is a big subject that Japan has. Therefore, rice powder attracts attention for improvement of the food self-support rate in Japan. Previously, the ric...

Full description

Bibliographic Details
Main Authors: M Shibuta, H Hamashima, S Itoh
Format: Article
Language:English
Published: MULTIPHYSICS 2016-09-01
Series:International Journal of Multiphysics
Online Access:http://journal.multiphysics.org/index.php/IJM/article/view/166
Description
Summary:In recent years, the food self-support rate of Japan is 40%, and this value is the lowest level of major advanced country. The stable supply of food is a big subject that Japan has. Therefore, rice powder attracts attention for improvement of the food self-support rate in Japan. Previously, the rice powder is produced by two methods. One is dry type, and the other is wet type. However, these systems have a fault of the heat damage of the starch and the consumption of a large quantity of water. In our laboratory, as solution of those problems, production of the rice powder by using the underwater shock wave is considered. Shock wave is the pressure wave which is over velocity of sound by discharging high energy in short time. Propagating shock wave in water is the underwater shock wave. This food processing using an underwater shock wave has little influence of heat and its processing time is very short, preventing the loss of nutrients. In this research optical observation experiment and the numerical simulation were performed using trial vessel, in order to understand the behavior of the underwater shock wave in the development of the rice powder production vessel using an underwater shock wave at the factory. In addition, in order to understand the rice powder production and to develop it, the numerical simulation about pulverization of rice is performed. By this method, the pressure which takes for rice at the time of pulverization, and its pulverization phenomenon are solved. Analysis soft LS-DYNA was used for these numerical simulations. The comparative study of the experiment and the numerical simulation was investigated. The behavior of the shock wave in the device and transformation of rice were able to be clarified.
ISSN:1750-9548
2048-3961