Quantum machine learning beyond kernel methods

Comparing the capabilities of different quantum machine learning protocols is difficult. Here, the authors show that different learning models based on parametrized quantum circuits can all be seen as quantum linear models, thus driving general conclusions on their resource requirements and capabili...

Full description

Bibliographic Details
Main Authors: Sofiene Jerbi, Lukas J. Fiderer, Hendrik Poulsen Nautrup, Jonas M. Kübler, Hans J. Briegel, Vedran Dunjko
Format: Article
Language:English
Published: Nature Portfolio 2023-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-36159-y
_version_ 1811171657299001344
author Sofiene Jerbi
Lukas J. Fiderer
Hendrik Poulsen Nautrup
Jonas M. Kübler
Hans J. Briegel
Vedran Dunjko
author_facet Sofiene Jerbi
Lukas J. Fiderer
Hendrik Poulsen Nautrup
Jonas M. Kübler
Hans J. Briegel
Vedran Dunjko
author_sort Sofiene Jerbi
collection DOAJ
description Comparing the capabilities of different quantum machine learning protocols is difficult. Here, the authors show that different learning models based on parametrized quantum circuits can all be seen as quantum linear models, thus driving general conclusions on their resource requirements and capabilities.
first_indexed 2024-04-10T17:17:36Z
format Article
id doaj.art-be9a37f1040943988bb2f3b9570a8b1a
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-04-10T17:17:36Z
publishDate 2023-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-be9a37f1040943988bb2f3b9570a8b1a2023-02-05T12:17:32ZengNature PortfolioNature Communications2041-17232023-01-011411810.1038/s41467-023-36159-yQuantum machine learning beyond kernel methodsSofiene Jerbi0Lukas J. Fiderer1Hendrik Poulsen Nautrup2Jonas M. Kübler3Hans J. Briegel4Vedran Dunjko5Institute for Theoretical Physics, University of InnsbruckInstitute for Theoretical Physics, University of InnsbruckInstitute for Theoretical Physics, University of InnsbruckMax Planck Institute for Intelligent SystemsInstitute for Theoretical Physics, University of InnsbruckLeiden UniversityComparing the capabilities of different quantum machine learning protocols is difficult. Here, the authors show that different learning models based on parametrized quantum circuits can all be seen as quantum linear models, thus driving general conclusions on their resource requirements and capabilities.https://doi.org/10.1038/s41467-023-36159-y
spellingShingle Sofiene Jerbi
Lukas J. Fiderer
Hendrik Poulsen Nautrup
Jonas M. Kübler
Hans J. Briegel
Vedran Dunjko
Quantum machine learning beyond kernel methods
Nature Communications
title Quantum machine learning beyond kernel methods
title_full Quantum machine learning beyond kernel methods
title_fullStr Quantum machine learning beyond kernel methods
title_full_unstemmed Quantum machine learning beyond kernel methods
title_short Quantum machine learning beyond kernel methods
title_sort quantum machine learning beyond kernel methods
url https://doi.org/10.1038/s41467-023-36159-y
work_keys_str_mv AT sofienejerbi quantummachinelearningbeyondkernelmethods
AT lukasjfiderer quantummachinelearningbeyondkernelmethods
AT hendrikpoulsennautrup quantummachinelearningbeyondkernelmethods
AT jonasmkubler quantummachinelearningbeyondkernelmethods
AT hansjbriegel quantummachinelearningbeyondkernelmethods
AT vedrandunjko quantummachinelearningbeyondkernelmethods