The performance of immune-based neural network with financial time series prediction

This paper presents the use of immune-based neural networks that include multilayer perceptron (MLP) and functional neural network for the prediction of financial time series signals. Extensive simulations for the prediction of one- and five-steps-ahead of stationary and non-stationary time series w...

Full description

Bibliographic Details
Main Authors: Dhiya Al-Jumeily, Abir J. Hussain
Format: Article
Language:English
Published: Taylor & Francis Group 2015-12-01
Series:Cogent Engineering
Subjects:
Online Access:http://dx.doi.org/10.1080/23311916.2014.985005
Description
Summary:This paper presents the use of immune-based neural networks that include multilayer perceptron (MLP) and functional neural network for the prediction of financial time series signals. Extensive simulations for the prediction of one- and five-steps-ahead of stationary and non-stationary time series were performed which indicate that immune-based neural networks in most cases demonstrated advantages in capturing chaotic movement in the financial signals with an improvement in the profit return and rapid convergence over MLPs.
ISSN:2331-1916