On the Independence Number of Edge Chromatic Critical Graphs

In 1968, Vizing conjectured that for any edge chromatic critical graph G = (V,E) with maximum degree △ and independence number α (G), α (G) ≤. It is known that α (G) < |V |. In this paper we improve this bound when △≥ 4. Our precise result depends on the number n2 of 2-vertices in G, but in part...

Full description

Bibliographic Details
Main Authors: Pang Shiyou, Miao Lianying, Song Wenyao, Miao Zhengke
Format: Article
Language:English
Published: University of Zielona Góra 2014-08-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.1753
_version_ 1797713239326326784
author Pang Shiyou
Miao Lianying
Song Wenyao
Miao Zhengke
author_facet Pang Shiyou
Miao Lianying
Song Wenyao
Miao Zhengke
author_sort Pang Shiyou
collection DOAJ
description In 1968, Vizing conjectured that for any edge chromatic critical graph G = (V,E) with maximum degree △ and independence number α (G), α (G) ≤. It is known that α (G) < |V |. In this paper we improve this bound when △≥ 4. Our precise result depends on the number n2 of 2-vertices in G, but in particular we prove that α (G) ≤|V | when △ ≥ 5 and n2 ≤ 2(△− 1)
first_indexed 2024-03-12T07:33:28Z
format Article
id doaj.art-becf8327da144f80bd83ffb4561711aa
institution Directory Open Access Journal
issn 2083-5892
language English
last_indexed 2024-03-12T07:33:28Z
publishDate 2014-08-01
publisher University of Zielona Góra
record_format Article
series Discussiones Mathematicae Graph Theory
spelling doaj.art-becf8327da144f80bd83ffb4561711aa2023-09-02T21:42:48ZengUniversity of Zielona GóraDiscussiones Mathematicae Graph Theory2083-58922014-08-0134357758410.7151/dmgt.1753dmgt.1753On the Independence Number of Edge Chromatic Critical GraphsPang Shiyou0Miao Lianying1Song Wenyao2Miao Zhengke3School of Science, China University of Mining and Technology Xuzhou, Jiangsu, 221008, P.R.ChinaDepartment of Mathematics, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P.R.ChinaSchool of Science, China University of Mining and Technology Xuzhou, Jiangsu, 221008, P.R.ChinaDepartment of Mathematics, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P.R.ChinaIn 1968, Vizing conjectured that for any edge chromatic critical graph G = (V,E) with maximum degree △ and independence number α (G), α (G) ≤. It is known that α (G) < |V |. In this paper we improve this bound when △≥ 4. Our precise result depends on the number n2 of 2-vertices in G, but in particular we prove that α (G) ≤|V | when △ ≥ 5 and n2 ≤ 2(△− 1)https://doi.org/10.7151/dmgt.1753edge coloringedge-chromatic critical graphsindependence number
spellingShingle Pang Shiyou
Miao Lianying
Song Wenyao
Miao Zhengke
On the Independence Number of Edge Chromatic Critical Graphs
Discussiones Mathematicae Graph Theory
edge coloring
edge-chromatic critical graphs
independence number
title On the Independence Number of Edge Chromatic Critical Graphs
title_full On the Independence Number of Edge Chromatic Critical Graphs
title_fullStr On the Independence Number of Edge Chromatic Critical Graphs
title_full_unstemmed On the Independence Number of Edge Chromatic Critical Graphs
title_short On the Independence Number of Edge Chromatic Critical Graphs
title_sort on the independence number of edge chromatic critical graphs
topic edge coloring
edge-chromatic critical graphs
independence number
url https://doi.org/10.7151/dmgt.1753
work_keys_str_mv AT pangshiyou ontheindependencenumberofedgechromaticcriticalgraphs
AT miaolianying ontheindependencenumberofedgechromaticcriticalgraphs
AT songwenyao ontheindependencenumberofedgechromaticcriticalgraphs
AT miaozhengke ontheindependencenumberofedgechromaticcriticalgraphs