Transcriptome and proteome analysis of ultrasound pretreated peanut sprouts

Combined transcriptomic and proteome analyses were carried out to investigate the influence of ultrasound pretreatment on peanut sprouts. In total, 1104 differentially expressed genes (upregulated:538, downregulated:521) and 399 differentially accumulated proteins (upregulated: 197, downregulated: 2...

Full description

Bibliographic Details
Main Authors: Mengxi Xie, Miao Yu, Liangchen Zhang, Taiyuan Shi
Format: Article
Language:English
Published: Elsevier 2022-07-01
Series:Food Chemistry: Molecular Sciences
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666566222000302
Description
Summary:Combined transcriptomic and proteome analyses were carried out to investigate the influence of ultrasound pretreatment on peanut sprouts. In total, 1104 differentially expressed genes (upregulated:538, downregulated:521) and 399 differentially accumulated proteins (upregulated: 197, downregulated: 202) were identified between ultrasound pretreated and nontreated peanut sprouts. These genes and proteins were related to a series of crucial biomolecular processes, including the metabolism of carbohydrates, terpenoids, and polyketides. The most enriched pathways were further analyzed in each category. Importantly, ultrasound upregulated three key genes namely the arahy. Tifrunner. gnm1.ann1.DXZI51, arahy.Tifrunner.gnm1.ann1.VGN2GE, and arahy.Tifrunner.gnm1.ann1.Y23DM6 that could have increased the content of resveratrol via phenylpropanoid biosynthesis. Furthermore, this study shows that B3, MYB transcription factor-like families play a significant role in response to ultrasound treatment. Overall, this study provides useful transcriptomics and proteomics information highlighting the molecular mechanisms that influence nutritional differences in peanut sprouts.
ISSN:2666-5662