Designing Spinel Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> Electrode as Anode Material for Poly(ethylene)oxide-Based Solid-State Batteries

The development of a promising Li metal solid-state battery (SSB) is currently hindered by the instability of Li metal during electrodeposition; which is the main cause of dendrite growth and cell failure at elevated currents. The replacement of Li metal anode by spinel Li<sub>4</sub>Ti&...

Full description

Bibliographic Details
Main Authors: Ander Orue Mendizabal, Nuria Gomez, Frédéric Aguesse, Pedro López-Aranguren
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/5/1213
Description
Summary:The development of a promising Li metal solid-state battery (SSB) is currently hindered by the instability of Li metal during electrodeposition; which is the main cause of dendrite growth and cell failure at elevated currents. The replacement of Li metal anode by spinel Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> (LTO) in SSBs would avoid such problems, endowing the battery with its excellent features such as long cycling performance, high safety and easy fabrication. In the present work, we provide an evaluation of the electrochemical properties of poly(ethylene)oxide (PEO)-based solid-state batteries using LTO as the active material. Electrode laminates have been developed and optimized using electronic conductive additives with different morphologies such as carbon black and multiwalled carbon nanotubes. The electrochemical performance of the electrodes was assessed on half-cells using a PEO-based solid electrolyte and a lithium metal anode. The optimized electrodes displayed an enhanced capability rate, delivering 150 mAh g<sup>−1</sup> at C/2, and a stable lifespan over 140 cycles at C/20 with a capacity retention of 83%. Moreover, postmortem characterization did not evidence any morphological degradation of the components after ageing, highlighting the long-cycling feature of the LTO electrodes. The present results bring out the opportunity to build high-performance solid-state batteries using LTO as anode material.
ISSN:1996-1944