Dual selections based knowledge transfer learning for cross-subject motor imagery EEG classification

IntroductionMotor imagery electroencephalograph (MI-EEG) has attracted great attention in constructing non-invasive brain-computer interfaces (BCIs) due to its low-cost and convenience. However, only a few MI-EEG classification methods have been recently been applied to BCIs, mainly because they suf...

Full description

Bibliographic Details
Main Author: Tian-jian Luo
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-11-01
Series:Frontiers in Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fnins.2023.1274320/full
Description
Summary:IntroductionMotor imagery electroencephalograph (MI-EEG) has attracted great attention in constructing non-invasive brain-computer interfaces (BCIs) due to its low-cost and convenience. However, only a few MI-EEG classification methods have been recently been applied to BCIs, mainly because they suffered from sample variability across subjects. To address this issue, the cross-subject scenario based on domain adaptation has been widely investigated. However, existing methods often encounter problems such as redundant features and incorrect pseudo-label predictions in the target domain.MethodsTo achieve high performance cross-subject MI-EEG classification, this paper proposes a novel method called Dual Selections based Knowledge Transfer Learning (DS-KTL). DS-KTL selects both discriminative features from the source domain and corrects pseudo-labels from the target domain. The DS-KTL method applies centroid alignment to the samples initially, and then adopts Riemannian tangent space features for feature adaptation. During feature adaptation, dual selections are performed with regularizations, which enhance the classification performance during iterations.Results and discussionEmpirical studies conducted on two benchmark MI-EEG datasets demonstrate the feasibility and effectiveness of the proposed method under multi-source to single-target and single-source to single-target cross-subject strategies. The DS-KTL method achieves significant classification performance improvement with similar efficiency compared to state-of-the-art methods. Ablation studies are also conducted to evaluate the characteristics and parameters of the proposed DS-KTL method.
ISSN:1662-453X