Population Pharmacokinetic and Pharmacodynamic Analysis of Dalbavancin for Long-Term Treatment of Subacute and/or Chronic Infectious Diseases: The Major Role of Therapeutic Drug Monitoring

A population pharmacokinetic analysis of dalbavancin was conducted in patients with different infection sites. Non-linear mixed effect modeling was used for pharmacokinetic analysis and covariate evaluation. Monte Carlo simulations assessed the probability of target attainment (PTA) of total dalbava...

Full description

Bibliographic Details
Main Authors: Pier Giorgio Cojutti, Sara Tedeschi, Milo Gatti, Eleonora Zamparini, Marianna Meschiari, Paola Della Siega, Maria Mazzitelli, Laura Soavi, Raffaella Binazzi, Elke Maria Erne, Marco Rizzi, Anna Maria Cattelan, Carlo Tascini, Cristina Mussini, Pierluigi Viale, Federico Pea
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Antibiotics
Subjects:
Online Access:https://www.mdpi.com/2079-6382/11/8/996
Description
Summary:A population pharmacokinetic analysis of dalbavancin was conducted in patients with different infection sites. Non-linear mixed effect modeling was used for pharmacokinetic analysis and covariate evaluation. Monte Carlo simulations assessed the probability of target attainment (PTA) of total dalbavancin concentration ≥ 8.04 mg/L over time (associated with ≥90% probability of optimal pharmacodynamic target attainment of <i>f</i>AUC<sub>24h</sub>/MIC > 111.1 against <i>S. aureus</i>) associated with a single or double dosage, one week apart, of 1000 or 1500 mg in patients with different classes of renal function. Sixty-nine patients with 289 concentrations were included. Most of them (53/69, 76.8%) had bone and joint infections. A two-compartment model adequately fitted dalbavancin concentration–time data. Creatinine clearance (CL<sub>CR</sub>) was the only covariate associated with dalbavancin clearance. Monte Carlo simulations showed that, in patients with severe renal dysfunction, the 1000 mg single or double one week apart dosage may ensure optimal PTAs of 2 and 5 weeks, respectively. In patients with preserved renal function, the 1500 mg single or double one-week apart dosage may ensure optimal PTAs of 2 and 4 to 6 weeks, respectively. Therapeutic drug monitoring should be considered mandatory for managing inter-individual variability and for supporting clinicians in long-term treatments of subacute and chronic infections.
ISSN:2079-6382