Minimum functional equation and some Pexider-type functional equation on any group

We discuss the solution to the minimum functional equation $ \begin{align} \min \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $ for a real-valued function $ \eta: G \to \mathbb{R} $ defined on arbitrary group $ G $. In addition, we examine the Pexider-...

Full description

Bibliographic Details
Main Authors: Muhammad Sarfraz, Yongjin Li
Format: Article
Language:English
Published: AIMS Press 2021-08-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2021656?viewType=HTML
Description
Summary:We discuss the solution to the minimum functional equation $ \begin{align} \min \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $ for a real-valued function $ \eta: G \to \mathbb{R} $ defined on arbitrary group $ G $. In addition, we examine the Pexider-type functional equation $ \begin{align} \max \{\, \eta(xy^{-1}), \eta(xy) \, \} = \chi(x)\eta(y)+\psi(x), \qquad x, y \in G, \end{align} $ where $ \eta $, $ \chi $ and $ \psi $ are real mappings acting on arbitrary group $ G $. We also investigate this Pexiderized functional equation that generalizes two functional equations $ \begin{align} \max \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $ and $ \begin{align} \min \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $ with the restriction that the function $ \eta $ satisfies the Kannappan condition.
ISSN:2473-6988