Minimum functional equation and some Pexider-type functional equation on any group

We discuss the solution to the minimum functional equation $ \begin{align} \min \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $ for a real-valued function $ \eta: G \to \mathbb{R} $ defined on arbitrary group $ G $. In addition, we examine the Pexider-...

Full description

Bibliographic Details
Main Authors: Muhammad Sarfraz, Yongjin Li
Format: Article
Language:English
Published: AIMS Press 2021-08-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2021656?viewType=HTML
_version_ 1818902519935401984
author Muhammad Sarfraz
Yongjin Li
author_facet Muhammad Sarfraz
Yongjin Li
author_sort Muhammad Sarfraz
collection DOAJ
description We discuss the solution to the minimum functional equation $ \begin{align} \min \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $ for a real-valued function $ \eta: G \to \mathbb{R} $ defined on arbitrary group $ G $. In addition, we examine the Pexider-type functional equation $ \begin{align} \max \{\, \eta(xy^{-1}), \eta(xy) \, \} = \chi(x)\eta(y)+\psi(x), \qquad x, y \in G, \end{align} $ where $ \eta $, $ \chi $ and $ \psi $ are real mappings acting on arbitrary group $ G $. We also investigate this Pexiderized functional equation that generalizes two functional equations $ \begin{align} \max \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $ and $ \begin{align} \min \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $ with the restriction that the function $ \eta $ satisfies the Kannappan condition.
first_indexed 2024-12-19T20:36:57Z
format Article
id doaj.art-bef667a9b63b412dbc4615b2e4590d32
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-19T20:36:57Z
publishDate 2021-08-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-bef667a9b63b412dbc4615b2e4590d322022-12-21T20:06:30ZengAIMS PressAIMS Mathematics2473-69882021-08-01610113051131710.3934/math.2021656Minimum functional equation and some Pexider-type functional equation on any groupMuhammad Sarfraz0Yongjin Li1School of Mathematics, Sun Yat-sen University, Guangzhou 510275, ChinaSchool of Mathematics, Sun Yat-sen University, Guangzhou 510275, ChinaWe discuss the solution to the minimum functional equation $ \begin{align} \min \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $ for a real-valued function $ \eta: G \to \mathbb{R} $ defined on arbitrary group $ G $. In addition, we examine the Pexider-type functional equation $ \begin{align} \max \{\, \eta(xy^{-1}), \eta(xy) \, \} = \chi(x)\eta(y)+\psi(x), \qquad x, y \in G, \end{align} $ where $ \eta $, $ \chi $ and $ \psi $ are real mappings acting on arbitrary group $ G $. We also investigate this Pexiderized functional equation that generalizes two functional equations $ \begin{align} \max \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $ and $ \begin{align} \min \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $ with the restriction that the function $ \eta $ satisfies the Kannappan condition.https://www.aimspress.com/article/doi/10.3934/math.2021656?viewType=HTMLminimum functional equationpexider functional equationkannappan conditionstrictly positive solution
spellingShingle Muhammad Sarfraz
Yongjin Li
Minimum functional equation and some Pexider-type functional equation on any group
AIMS Mathematics
minimum functional equation
pexider functional equation
kannappan condition
strictly positive solution
title Minimum functional equation and some Pexider-type functional equation on any group
title_full Minimum functional equation and some Pexider-type functional equation on any group
title_fullStr Minimum functional equation and some Pexider-type functional equation on any group
title_full_unstemmed Minimum functional equation and some Pexider-type functional equation on any group
title_short Minimum functional equation and some Pexider-type functional equation on any group
title_sort minimum functional equation and some pexider type functional equation on any group
topic minimum functional equation
pexider functional equation
kannappan condition
strictly positive solution
url https://www.aimspress.com/article/doi/10.3934/math.2021656?viewType=HTML
work_keys_str_mv AT muhammadsarfraz minimumfunctionalequationandsomepexidertypefunctionalequationonanygroup
AT yongjinli minimumfunctionalequationandsomepexidertypefunctionalequationonanygroup