Comparative Study of BLDC Motor Drives with Different Approaches: FCS-Model Predictive Control and Hysteresis Current Control
The control techniques of the brushless DC (BLDC) motor have gained a large amount of interest in recent years, with their use being implemented in order to achieve a high-performance drive, including quick transient response and high-quality waveforms at the steady state. This paper provides a comp...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-06-01
|
Series: | World Electric Vehicle Journal |
Subjects: | |
Online Access: | https://www.mdpi.com/2032-6653/13/7/112 |
_version_ | 1797414819259744256 |
---|---|
author | Mohamed Azab |
author_facet | Mohamed Azab |
author_sort | Mohamed Azab |
collection | DOAJ |
description | The control techniques of the brushless DC (BLDC) motor have gained a large amount of interest in recent years, with their use being implemented in order to achieve a high-performance drive, including quick transient response and high-quality waveforms at the steady state. This paper provides a comparative study between three control schemes of BLDC motors: the direct power control scheme using a finite control set model predictive control (FCS-MPC) approach, the stator current controlled scheme using an FCS-MPC approach, and the stator current controlled scheme using ON–OFF hysteresis current controllers. The three systems were studied and investigated under the same operating conditions. The comparative study included investigating the performance of the BLDC drive in both steady state and transient operations. Qualitative and quantitative analyses were performed on the results obtained with each control scheme. The obtained results demonstrate the validity and effectiveness of the three investigated schemes in controlling the motor speed to the desired value under sudden load changes and achieving satisfactory quick transient responses. However, the results indicate the superiority of the direct power control scheme using an FCS-MPC approach over the others in terms of its minimum torque ripple, lowest torque and speed pulsations, minimum active and reactive power ripples, and high-quality waveforms of the stator currents drawn by the motor with minimum THD. |
first_indexed | 2024-03-09T05:39:29Z |
format | Article |
id | doaj.art-bef878ecdc2b453db303f3e5d2c8525a |
institution | Directory Open Access Journal |
issn | 2032-6653 |
language | English |
last_indexed | 2024-03-09T05:39:29Z |
publishDate | 2022-06-01 |
publisher | MDPI AG |
record_format | Article |
series | World Electric Vehicle Journal |
spelling | doaj.art-bef878ecdc2b453db303f3e5d2c8525a2023-12-03T12:26:49ZengMDPI AGWorld Electric Vehicle Journal2032-66532022-06-0113711210.3390/wevj13070112Comparative Study of BLDC Motor Drives with Different Approaches: FCS-Model Predictive Control and Hysteresis Current ControlMohamed Azab0EEET Department, Yanbu Industrial College, Yanbu al-Sinaiyah 41912, Saudi ArabiaThe control techniques of the brushless DC (BLDC) motor have gained a large amount of interest in recent years, with their use being implemented in order to achieve a high-performance drive, including quick transient response and high-quality waveforms at the steady state. This paper provides a comparative study between three control schemes of BLDC motors: the direct power control scheme using a finite control set model predictive control (FCS-MPC) approach, the stator current controlled scheme using an FCS-MPC approach, and the stator current controlled scheme using ON–OFF hysteresis current controllers. The three systems were studied and investigated under the same operating conditions. The comparative study included investigating the performance of the BLDC drive in both steady state and transient operations. Qualitative and quantitative analyses were performed on the results obtained with each control scheme. The obtained results demonstrate the validity and effectiveness of the three investigated schemes in controlling the motor speed to the desired value under sudden load changes and achieving satisfactory quick transient responses. However, the results indicate the superiority of the direct power control scheme using an FCS-MPC approach over the others in terms of its minimum torque ripple, lowest torque and speed pulsations, minimum active and reactive power ripples, and high-quality waveforms of the stator currents drawn by the motor with minimum THD.https://www.mdpi.com/2032-6653/13/7/112BLDC motormodel predictive controlhysteresis current controllerdirect power control |
spellingShingle | Mohamed Azab Comparative Study of BLDC Motor Drives with Different Approaches: FCS-Model Predictive Control and Hysteresis Current Control World Electric Vehicle Journal BLDC motor model predictive control hysteresis current controller direct power control |
title | Comparative Study of BLDC Motor Drives with Different Approaches: FCS-Model Predictive Control and Hysteresis Current Control |
title_full | Comparative Study of BLDC Motor Drives with Different Approaches: FCS-Model Predictive Control and Hysteresis Current Control |
title_fullStr | Comparative Study of BLDC Motor Drives with Different Approaches: FCS-Model Predictive Control and Hysteresis Current Control |
title_full_unstemmed | Comparative Study of BLDC Motor Drives with Different Approaches: FCS-Model Predictive Control and Hysteresis Current Control |
title_short | Comparative Study of BLDC Motor Drives with Different Approaches: FCS-Model Predictive Control and Hysteresis Current Control |
title_sort | comparative study of bldc motor drives with different approaches fcs model predictive control and hysteresis current control |
topic | BLDC motor model predictive control hysteresis current controller direct power control |
url | https://www.mdpi.com/2032-6653/13/7/112 |
work_keys_str_mv | AT mohamedazab comparativestudyofbldcmotordriveswithdifferentapproachesfcsmodelpredictivecontrolandhysteresiscurrentcontrol |