Control of the Longitudinal Compression and Transverse Focus of Ultrafast Electron Beam for Detecting the Transient Evolution of Materials

Ultrafast detection is an effective method to reveal the transient evolution mechanism of materials. Compared with ultra-fast X-ray diffraction (XRD), the ultra-fast electron beam is increasingly adopted because the larger scattering cross-section is less harmful to the sample. The keV single-shot u...

Full description

Bibliographic Details
Main Authors: Xintian Cai, Zhen Wang, Chaoyue Ji, Xuan Wang, Zhiyin Gan, Sheng Liu
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/2/571
_version_ 1797492448539181056
author Xintian Cai
Zhen Wang
Chaoyue Ji
Xuan Wang
Zhiyin Gan
Sheng Liu
author_facet Xintian Cai
Zhen Wang
Chaoyue Ji
Xuan Wang
Zhiyin Gan
Sheng Liu
author_sort Xintian Cai
collection DOAJ
description Ultrafast detection is an effective method to reveal the transient evolution mechanism of materials. Compared with ultra-fast X-ray diffraction (XRD), the ultra-fast electron beam is increasingly adopted because the larger scattering cross-section is less harmful to the sample. The keV single-shot ultra-fast electron imaging system has been widely used with its compact structure and easy integration. To achieve both the single pulse imaging and the ultra-high temporal resolution, magnetic lenses are typically used for transverse focus to increase signal strength, while radio frequency (RF) cavities are generally utilized for longitudinal compression to improve temporal resolution. However, the detection signal is relatively weak due to the Coulomb force between electrons. Moreover, the effect of RF compression on the transverse focus is usually ignored. We established a particle tracking model to simulate the electron pulse propagation based on the 1-D fluid equation and the 2-D mean-field equation. Under considering the relativity effect and Coulomb force, the impact of RF compression on the transverse focus was studied by solving the fifth-order Rung–Kutta equation. The results show that the RF cavity is not only a key component of longitudinal compression but also affects the transverse focusing. While the effect of transverse focus on longitudinal duration is negligible. By adjusting the position and compression strength of the RF cavity, the beam spot radius can be reduced from 100 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo mathvariant="sans-serif">μ</mo></semantics></math></inline-formula>m to 30 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo mathvariant="sans-serif">μ</mo></semantics></math></inline-formula>m under the simulation conditions in this paper. When the number of single pulse electrons remains constant, the electrons density incident on the sample could be increased from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.18</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>12</mn></mrow></msup></mrow></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.54</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>13</mn></mrow></msup></mrow></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula>, which is 11 times the original. The larger the electron density incident on the sample, the greater the signal intensity, which is more conducive to detecting the transient evolution of the material.
first_indexed 2024-03-10T01:03:11Z
format Article
id doaj.art-bf019e24110c451fbab2c708b43f956d
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-03-10T01:03:11Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-bf019e24110c451fbab2c708b43f956d2023-11-23T14:31:20ZengMDPI AGMaterials1996-19442022-01-0115257110.3390/ma15020571Control of the Longitudinal Compression and Transverse Focus of Ultrafast Electron Beam for Detecting the Transient Evolution of MaterialsXintian Cai0Zhen Wang1Chaoyue Ji2Xuan Wang3Zhiyin Gan4Sheng Liu5The Institute of Technological Sciences, Wuhan University, Wuhan 430072, ChinaThe Institute of Technological Sciences, Wuhan University, Wuhan 430072, ChinaThe Institute of Technological Sciences, Wuhan University, Wuhan 430072, ChinaBeijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, ChinaSchool of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074, ChinaThe Institute of Technological Sciences, Wuhan University, Wuhan 430072, ChinaUltrafast detection is an effective method to reveal the transient evolution mechanism of materials. Compared with ultra-fast X-ray diffraction (XRD), the ultra-fast electron beam is increasingly adopted because the larger scattering cross-section is less harmful to the sample. The keV single-shot ultra-fast electron imaging system has been widely used with its compact structure and easy integration. To achieve both the single pulse imaging and the ultra-high temporal resolution, magnetic lenses are typically used for transverse focus to increase signal strength, while radio frequency (RF) cavities are generally utilized for longitudinal compression to improve temporal resolution. However, the detection signal is relatively weak due to the Coulomb force between electrons. Moreover, the effect of RF compression on the transverse focus is usually ignored. We established a particle tracking model to simulate the electron pulse propagation based on the 1-D fluid equation and the 2-D mean-field equation. Under considering the relativity effect and Coulomb force, the impact of RF compression on the transverse focus was studied by solving the fifth-order Rung–Kutta equation. The results show that the RF cavity is not only a key component of longitudinal compression but also affects the transverse focusing. While the effect of transverse focus on longitudinal duration is negligible. By adjusting the position and compression strength of the RF cavity, the beam spot radius can be reduced from 100 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo mathvariant="sans-serif">μ</mo></semantics></math></inline-formula>m to 30 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo mathvariant="sans-serif">μ</mo></semantics></math></inline-formula>m under the simulation conditions in this paper. When the number of single pulse electrons remains constant, the electrons density incident on the sample could be increased from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.18</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>12</mn></mrow></msup></mrow></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.54</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>13</mn></mrow></msup></mrow></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula>, which is 11 times the original. The larger the electron density incident on the sample, the greater the signal intensity, which is more conducive to detecting the transient evolution of the material.https://www.mdpi.com/1996-1944/15/2/571transient evolutiondetectionultra-fast electron beam
spellingShingle Xintian Cai
Zhen Wang
Chaoyue Ji
Xuan Wang
Zhiyin Gan
Sheng Liu
Control of the Longitudinal Compression and Transverse Focus of Ultrafast Electron Beam for Detecting the Transient Evolution of Materials
Materials
transient evolution
detection
ultra-fast electron beam
title Control of the Longitudinal Compression and Transverse Focus of Ultrafast Electron Beam for Detecting the Transient Evolution of Materials
title_full Control of the Longitudinal Compression and Transverse Focus of Ultrafast Electron Beam for Detecting the Transient Evolution of Materials
title_fullStr Control of the Longitudinal Compression and Transverse Focus of Ultrafast Electron Beam for Detecting the Transient Evolution of Materials
title_full_unstemmed Control of the Longitudinal Compression and Transverse Focus of Ultrafast Electron Beam for Detecting the Transient Evolution of Materials
title_short Control of the Longitudinal Compression and Transverse Focus of Ultrafast Electron Beam for Detecting the Transient Evolution of Materials
title_sort control of the longitudinal compression and transverse focus of ultrafast electron beam for detecting the transient evolution of materials
topic transient evolution
detection
ultra-fast electron beam
url https://www.mdpi.com/1996-1944/15/2/571
work_keys_str_mv AT xintiancai controlofthelongitudinalcompressionandtransversefocusofultrafastelectronbeamfordetectingthetransientevolutionofmaterials
AT zhenwang controlofthelongitudinalcompressionandtransversefocusofultrafastelectronbeamfordetectingthetransientevolutionofmaterials
AT chaoyueji controlofthelongitudinalcompressionandtransversefocusofultrafastelectronbeamfordetectingthetransientevolutionofmaterials
AT xuanwang controlofthelongitudinalcompressionandtransversefocusofultrafastelectronbeamfordetectingthetransientevolutionofmaterials
AT zhiyingan controlofthelongitudinalcompressionandtransversefocusofultrafastelectronbeamfordetectingthetransientevolutionofmaterials
AT shengliu controlofthelongitudinalcompressionandtransversefocusofultrafastelectronbeamfordetectingthetransientevolutionofmaterials